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INTRODUCTION 
 
TRANSPORT is a first— and second—order matrix multiplication computer 
program intended for the design of static-magnetic beam transport systems. 
It has been in existence in various evolutionary versions since 1963. The 
present version, described in this manual, includes both first— and second 
order fitting capabilities. 
Many people from various laboratories around the world have contributed either 
directly or indirectly to the development of TRANSPORT. The first—order matrix 
methods were developed by the AGS machine theorists followed by a paper by Penner. 
The extension of the first—order matrix methods to include second and higher 
orders was conceived and developed by Brown, Belbeoch and Bounin in Orsay, France, 
in 1958-59. The original first—order TRANSPORT computer program was written in 
BALGOL by C.H. Moore at SLAC in collaboration with H.S . Butler and S.K. Howry in 
1963. The second—order portion of the program was developed and debugged by Howry 
and Brown , also in BALGOL. The resulting BALGOL version was 
translated into FORTRAN by S . Kowalski at MIT and later debugged and improved by 
Kear, Howry and Brown at SLAC. In 1971-72, D. Carey at FNAL 
completely rewrote the program and developed an efficient second—order 
fitting routine using the coupling coefficient (partial derivatives) of multipole 
components to the optics as derived by Browns). This version 
was implemented at SLAC by F. Rothacker in the early spring of 1972 and 
subsequently carried to CERN in April, 1972, by K.L. Brown. 
C. Iselin of CERN made further contributions to the program structure and improved 
the convergence capabilities of the first—order fitting routines. 
A standard version of the resulting program has now been adopted at 
SLAC, FNAL, and CERN. This manual describes the use of this standard 
version and is not necessarily applicable to other versions of TRANSPORT. 
 
Copies of this manual may be obtained from 
1) Scientific Information Service, CERN, 1211 Geneva 23, Switzerland (Ref. CERN 
80-04) 
2) The Reports Office, Stanford Linear Accelerator Center, P.O. Box 4349, 
Stanford, CA 94305, USA (Ref. SLAC—91, without the Appendix). 
3) The Reports Office, Fermi National Accelerator Laboratory, P.O. Box 
500, Batavia, IL 60510, USA (Ref. NAL—91, "TRANSPORT Appendix" available under 
separate cover) 
 
The program may be obtained from: 
1) IBM Version: 

Frank Rothacker  
TRANSPORT Program Librarian  
Mail Bin 88  
Stanford Linear Accelerator Center  
P.O. Box 4349  
Stanford, CA 94305, USA 
 

2) IBM, CDC or PDPlO Versions: 
David C . Carey  
Fermi National Accelerator Laboratory  
P.O. Box 500  
Batavia, IL 60510, USA 
 

3) IBM or CDC Vers ions : 
Program Library  
Division DD 
CERN 
CH 1211 Genéve 23  
Switzerland 
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The present authors assume responsibility for the contents of this 
manual, but in no way imply that they are solely responsible for the 
entire evolution of the program. 
In order to make this report available without delay, the Appendix 
has been reproduced directly as published by FNAL. 
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MATHEMATICAL FORMULATION OF TRANSPORT 
1
 

 
General conventions 
 
A beam line is comprised of a set of magnetic elements placed sequentially at 
intervals along an assumed reference trajectory. The reference trajectory is here 
taken to be a path of a charged particle passing through idealized magnets (no 
fringing fields) and having the central design momentum of the beam line. 
In TRANSPORT, a beam line is described as a sequence of elements. 
Such elements may consist not only of magnets and the intervals between 
them, but also of specifications of the input beam, calculations to be done , 
or special configurations of the magnets. A certain relation, described 
below, of the magnets and their fields to the assumed reference trajectory 
is considered normal. Alternative configurations can be described by 
means of elements provided for such purposes. 
The two coordinates transverse to the initial reference trajectory 
are labeled as horizontal and vertical. A bending magnet will normally 
bend in the horizontal plane. To allow for other possibilities a coordinate 
rotation element is provided. Because of such other possibilities, 
when describing bending magnets we shall often speak of the bend and non 
bend planes. The transverse coordinates will also often be labeled x 
and y, while the longitudinal coordinate will be labeled z. 
All magnets are normally considered "aligned" on the central trajectory. A 
particle following the central trajectory through a magnet experiences a uniform 
field which begins and ends abruptly at the entrance and exit faces of the 
idealized magnet. Therefore, through a bending magnet the reference trajectory is 
the arc of a circle , while through all other magnetic elements it is a straight 
line . To accommodate a more gradual variation of field at the ends of a bending 
magnet a fringing field element is provided. In order to represent an orientation 
with respect to the reference trajectory other than normal of a magnet or 
section of a beam line, a misalignment element also exists. 
The magnetic field of any magnet, except a solenoid, is assumed to 
have midplane symmetry. This means that the scalar potential expanded 
in transverse coordinates about the reference trajectory is taken to be 
an odd function of the vertical coordinate. If a coordinate rotation is 
included, then the potential is odd in the coordinate to which the vertical  
has been rotated. For a bending magnet this will always be in the non-bend plane. 
The program TRANSPORT will step through the beam line, element by 
element, calculating the properties of the beam or other quantities, described 
below, where requested. Therefore one of the first elements is a 
specification of the phase space region occupied by the beam entering the 
system. Magnets and intervening spaces and other elements then follow 
in the sequence in which they occur in the beam line . Specifications of 
calculations to be done or of configurations other than normal are placed 
in the same sequence, at the point where their effect is to be made. 
 
The transfer matrix R 
 
The following of a charged particle through a system of magnetic 
lenses may be reduced to a process of matrix multiplication. At any specified 
position in the system an arbitrary charged particle is represented 
by a vector (single column matrix) X, whose components are the positions, 
angles, and momentum of the particle with respect to the reference trajectory, 
i.e. 

                                                           
1 For a more complete description of the mathematical basis of TRANSPORT, 
refer to SLAC—75 l‘), and to other references listed at the end of this 
manual 
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Definitions: 
x = the horizontal displacement of the arbitrary ray with respect 
to the assumed central trajectory. 
θ = the angle this ray makes in the horizontal plane with respect 
to the assumed central trajectory. 
y = the vertical displacement of the ray with respect to the 
assumed central trajectory. 
ϕ = the vertical angle of the ray with respect to the assumed 
central trajectory. 
ℓ = the path length difference between the arbitrary ray and the 
central trajectory. 
δ = Δp/p is the fractional momentum deviation of the ray from the 
assumed central trajectory. 
 
This vector, for a given particle, will henceforth be referred to as 
a ray. The magnetic lens is represented to first order by a square 
matrix R, which describes the action of the magnet on the particle coordinates. 
Thus the passage of a charged particle through the system may be 
represented by the equation 
 

 ( )    ( ) (1) 
 
where X(O) is the initial coordinate vector and X(l) is the final coordinate 
vector of the particle under consideration. The same transformation 
matrix R is used for all such particles traversing a given magnet [one 
particle differing from another only by its initial coordinate vector X(O)]. 
The traversing of several magnets and interspersing drift spaces is 
described by the same basic equation, but with R now being replaced by the 
product matrix R(t) = R(n) . . . R(3)R(2)R(l) of the individual matrices of 
the system elements. This cumulative transfer matrix is automatically 
calculated by the program and is called TRANSFORM 1. It may be printed 
where desired, as described in later sections. 
This formalism may be extended to second order by the addition of 
another term. The components of the final coordinate vector, in terms 
of the original, are now given as 
 

  ( )  ∑     ( )

 

  ∑      ( )  ( )

  

 (2) 

 
where T is the second—order transfer matrix. It too is accumulated by the 
program as one traverses a series of elements. At each point the series 
is again truncated to second order. Normally the program will calculate 
only the first—order terms and their effect. If it is desired to include 
second—order effects in a beam line , an element is provided which specifies 
that a second—order calculation is to be done. For more information on 
the T matrix, see the references at the end of the manual. 
 
The following of a charged particle via TRANSPORT through a system 
of magnets is thus analogous to tracing rays through a system of optical 
lenses. The difference is that TRANSPORT is a matrix calculation which 
truncates the problem to either first— or second—order in a Taylor's 
expansion about a central trajectory. For studying beam optics to greater 
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precision than a second-order TRANSPORT calculation permits, ray-tracing programs 
which directly integrate the basic differential equation of motion 
are recommended. 
 
The beam matrix σ 
 
In accelerator and beam transport systems , the behavior of an individual 
particle is often of less concern than is the behavior of a bundle 
of particles (the beam), of which an individual particle is a member. An extension 
of the matrix algebra of Eq. (1) provides a convenient means for 
defining and manipulating this beam. TRANSPORT assumes that the beam may 
be correctly represented in phase space by an ellipsoid in the six 
dimensional coordinate system described above. Particles in a beam are 
assumed to occupy the volume enclosed by the ellipsoid, each point re 
presenting a possible ray. The sum total of all phase points , the phase 
space volume , is commonly referred to as the "phase space" occupied by 
the beam. 
The validity and interpretation of this phase ellipse formalism 
must be ascertained for each system being designed. However, in general , 
for charged particle beams in, or emanating from accelerators , the firs t 
order phase ellipse formalism of TRANSPORT is a reasonable representation 
of physical reality. For other applications, such as charged particle 
spectrometers, caution is in order in its use and interpretation. 
The equation of an n—dimensional ellipsoid may be written in matrix 
form as follows: 
 

 ( )  ( )   ( )    (2) 
 
where X(O)T is the transpose of the coordinate vector X(O), and σ(0) is 
a real, positive definite, symmetric matrix. 
The volume of the n-dimensional ellipsoid defined by sigma is 

[
 
 
 

 (
 

 
  )

] (    )
 

 .  

 
The area of the projection in one plane is 

   (     )
 

 , where    is the submatrix corresponding to the given 
plane. This is the "phase space" occupied by the beam. 
As a particle passes through a system of magnets, it undergoes the 
matrix transformation of Eq. (1). Combining this transformation with the equation 
of the initial ellipsoid, and using the identity        (the unity matrix) , it 
follows that  
 
from which we derive 
 
The equation of the new ellipsoid after the transformation becomes 
 
where 
 
It can readily be shown that the square roots of the diagonal terms 
of the sigma matrix are a measure of the "beam size" in each coordinate. 
The off-diagonal terms determine the orientation of the ellipsoid in n—dimensiona1 
space (for TRANSPORT n = 6)

2
. Thus , we may specify the 

beam at any point in the system via Eq. (5) , given the initial "phase 
space" represented by the matrix elements of σ(0). 

                                                           
2 See the Appendix of this report, or the Appendix of Ref. 5, for a 
derivation of these statements. 
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The initial beam is specified by the user as one of the first elements of the beam 
line. Normally it is taken to be an upright ellipse 
centered on the reference trajectory; that is, there are no correlations 
between coordinates. Both correlations and centroid displacements may 
be introduced via additional elements. 
 
The phase ellipse may be printed wherever desired. For an interpretation of the 
parameters printed see the section under type code 1.0. 
When a second—order calculation is specified, the second-order matrix 
elements are included in the beam matrix. For details on how this is done 
see the Appendix to this manual. 
 
Fitting 
 
Several types of physical elements have been incorporated in the program to 
facilitate the design of very general beam transport systems. Included are an 
arbitrary drift distance, bending magnets, quadrupoles, sextupoles, solenoids, and 
an accelerator section (to first-order only). 
Provision is made in the program to vary some of the physical parameters 
of the elements comprising the system and to impose various constraints on the 
beam design. In a first—order run one may fit either the 
TRANSFORM (R) matrix representing the transformation of an arbitrary ray through 
the system and/or the phase ellipse (sigma) matrix representing 
a bundle of rays by the system as transformed. In a second-order run one 
may fit either the second—order TRANSFORM (T) matrix or minimize the net 
contribution of second-order terms to the beam (sigma) matrix. 
The program will normally make a run through the beam line using 
values for the physical parameters as specified by the user and printing 
the results . If constraints and parameters to be varied are indicated, 
it will attempt to fit. To do this it will make an additional series of 
runs through the beam line. Each time it will calculate corrections to 
be made from the previous step to the varied parameters to try to satisfy 
the indicated constraints. When the constraints are satisfied (or the 
fitting procedure has failed) the program will make a final run through 
the beam line again printing the results. In this final run the values 
of the physical parameters used are those which are the result of the 
fitting procedure. 
Thus, in principle, the program is capable of searching for and 
finding the first- or second—order solution to any physically realizable 
problem. In practice, life is not quite so simple. The user will find 
that an adequate knowledge of geometric magnetic optics principles is a 
necessary prerequisite to the successful use of TRANSPORT. He (or she) 
should possess a thorough understanding of the first—order matrix algebra 
of beam transport optics and of the physical interpretation of the various 
matrix elements . 
In other words, the program is superb at doing the numerical calculations for the 
problem but not the physics. The user must provide a 
reasonable physical input if he (or she) expects complete satisfaction 
from the program. For this reason a list of pertinent reprints and 
references are included at the end of this manual. They should provide 
assistance to the inexperienced as well as the experienced user. 
 
 
INPUT FORMAT FOR TRANSPORT (Pag.10) 
 
By the TRANSPORT input DATA SET is meant the totality of data read 
by the program in a single job. A DATA SET may consist of one or more 
problems placed sequentially. A problem specifies a calculation or set 
of calculations to be done on a given beam line. 
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 A problem, in turn, may consist of one or more problem steps. The data in 
the first step of a problem specify the beam line and the calculations to be made. 
The data in succeeding steps of the same problem specify only changes to the data 
given in the first step. 
 A common example of a problem with several steps is sequential fitting. In 
the first step one may specify that certain parameters are 
to be varied to satisfy certain constraints. Once the desired fit has 
been achieved the program will then proceed to the next step. The data in this 
step now need specify only which new parameters to vary, or old 
ones no longer to vary, or which constraints to add or delete. The values 
of the varied parameters that are passed from one step to the next one 
are those that are the result of the fitting procedure. 
 A problem step contains three kinds of DATA cards: the TITLE card, 
the INDICATOR card, and the ELEMENT cards. 
 The TITLE card contains a string of characters and blanks enclosed 
by single quotes. Whatever is between the quotes will be used as a 
heading in the output of a TRANSPORT run. 
 The second card of the input is the INDICATOR card. If the data 
which follow describe a new problem, a zero (0) is punched in any column 
on the card. If the data which follow describe changes to be made in 
the previous problem step, a one (1) or two (2) is punched in any column 
on the card. For further explanation read the Indicator Card section of 
this manual. 
 The remaining cards in the deck for a given problem step contain the 
DATA describing the beam line and the calculations to be done. The DATA 
consist of a sequence of elements whose order is the same as encountered 
as one proceeds down the beam line. Each element specifies a magnet or 
portion thereof or other piece of equipment, a drift space, the initial 
beam phase space , a calculation to be done , or a print instruction. 
Calculation specifications , such as misalignments and constraints, are 
placed in sequence with the other beam line elements where their effect 
is to take place. The input format of the cards is "free—field", which 
is described below. The data for a given problem step are terminated by 
the word SENTINEL, which need not be punched on a separate card. 
 Each element, in turn, is given by a sequence of items (mostly 
numbers) , separated by spaces and terminated by a semicolon. The items, 
in order, are a type code number, a vary field, the physical parameters, 
and an optional label. 
 The type code number identifies the element, indicating what sort 
of entity (such as a magnet, drift space, constraint, etc.) is represented. 
It is an integer (number) followed by a decimal point. The interpretation 
of the physical parameters which follow is therefore dependent on the type 
code number. The type code numbers and their meanings are summarized in 
Table 1. If the type code number is negative, the element will be ignored 
in the given problem step. However, storage for that element will be 
allocated by the program, so that the element may be introduced in a later 
step of the same problem. Storage space for any element in any problem 
step must be allocated in the first step of the problem. 
 The vary field indicates which physical parameters of the element 
are to be adjusted if there is to be any fitting. It is punched immediately (no 
intervening blanks) to the right of the decimal point of the type code number. See 
the section under type code 10.0 for an explanation of the use of vary codes. 
 The physical parameters are the quantities which describe the 
physical element represented. Such parameters may be lengths , magnetic 
fields, apertures, rotation angles, beam dimensions, or other quantities, 
depending on the type code number. The meanings for the physical parameters for 
each type code are described thoroughly in the section for that type code . A 
summary , indicating the order in which the physical parameters should be punched, 
is given in Table 1 . For any element the first physical parameter is the second 



- 10 - 
 

entry in Table 1 or the second parameter in the section describing a given 
element. In some cases the parameters of an element do not really refer to 
physical quantities, but will nevertheless be referred to as such in this manual. 
 The label, if present, contains one to four characters and is enclosed by 
single quotes, slashes or equal signs. During the calculation the elements will be 
printed in sequence and the label for a given element will be printed with that 
element. Labels are useful in problems with many elements and/or when sequential 
fitting is used. They must be used to identify any element to be changed in 
succeeding steps of a given problem. 
 Provision has been made in the program to allow the user to introduce 
comments before any type code entry in the data deck. This is accomplished 
by enclosing the comments made on each card within single parentheses. 
 Each element must be terminated by a semicolon (;). Optionally a 
semicolon may be replaced by an asterisk (*) or a dollar sign ($). Spaces before 
and after the semicolon are allowed but not required. If the program encounters a 
semicolon, dollar sign or asterisk before the expected number of parameters has 
been read in and if the indicator card was a 
zero (0) , the remaining parameters are set to zero. If the indicator 
card was a one (1) or two (2) , then the numbers indicated on the card are 
substituted for the numbers remaining from the previous solution; all 
other numbers are unchanged. 
 The "free—fie1d" input format of the data cards makes it considerably 
easier to prepare input than the standard fixed-field formats of FORTRAN. 
Numbers may be punched anywhere on the card and must simply be in the 
proper order. They must be separated by one or more blanks . Several 
elements may be included on the same card and a single element may continue from 
one card to the next. A single number must be all on one card , it may not 
continue from one card to the next . The program storage is limited to a total of 
2000 locations (including type codes and those parameters not punched but implied 
equal to zero) and 500 elements. 
A decimal number (e.g. 2.47) may be represented in any of the following ways: 
   2.47 
   .00247+3 
   .0247E+02 
   247E-2 
   247000-5 
 
 The sample problem below contains two problem steps , each beginning 
with title and indicator cards and terminating with a SENTINEL. The first 
step causes TRANSPORT to do a first-order calculation with fitting. The 
second initiates a second-order calculation with the data that is a result 
of that fitting. Corresponding elements between the two steps are identified by 
having the same label. 
 The type ten element which specifies the fitting condition is labeled FITl. 
It is active for the first—order calculation, but is turned off for 
the second-order calculation. The vary codes for elements DR1 are set to 
zero for the second—order problem. The second—order element, SECl, is 
ineffective during the fitting, but causes the program to compute the 
second—order matrices in the second calculation. 
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As many problems and problem steps as one wishes may be stacked in one job. 
 
Note that in previous versions of TRANSPORT a decimal point was 
required with every numerical entry except the indicator card (which 
must: not have a decimal point in any version of TRANSPORT). 
 
The use of labels (pag. 15) 
 
The use of labels is available for identification of individual 
elements. When inserted for the user's convenience, the association of 
a label with a given element is optional . I f the parameters of an element are to 
be changed between steps of a given problem, a label is required. The label 
identifies the element in the earlier step to which the changes specified in the 
later step are to apply. 
The label may be placed anywhere among the parameters of a given 
element. It should be enclosed in quotes, slashes, or equal signs. 
Blanks within a label are ignored. The maximum length of a label is 
four non—blank characters. 
As an example, the following all denote the same drift space: 
‘DRF’ 3. 1.5 ; 
3/DRF/15-1* 
3. .15E1 = D R F =   
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On a 15.0 type code element the label may not be the third item. 
This is to avoid ambiguities with the unit name. Thus the following are 
not equivalent: 

 
 
 If the parameters describing an element are to differ in succeeding 
steps of a given problem the element must be included in both steps, 
having the same label each time. All elements which appear in a problem 
must be included in the first step (indicator card 0) of that problem. 
Only those to be changed in later steps need to be labeled. In later steps 
(indicator card 1) of a problem only those elements to be changed 
are specified. The elements to be changed are identified by their labels. 
 If the type code number of an element is negative in a given step of a 
problem, that element will be ignored when the calculation is performed. However, 
storage space in the computer will be allocated for the element for possible 
activation in later steps of the problem. In the later step, only those parameters 
to be changed need to be specified. 
The storage space allocated for the parameters of a given element is determined 
only by the type code. The sole exceptions are the continuation codes for type 
codes 1.0 and 14.0. 
For example, if a fitting constraint is to be ignored in the first 
step of a problem, but activated in a later step, it should be indicated 
in both steps . In the first step such an element might appear as 
-10. 'FIT' ; 
In the later step one would then insert 
10. 1. 2. 0.0 .001 'FIT' ; 
causing a waist constraint to be imposed on the beam. Alternatively one can 
specify the physical parameters in the first step and then, in the 
later step, merely indicate that the element is now to be activated. The 
above procedure is therefore equivalent to placing the element : 
-10. 1. 2. 0.0 .001 ‘FIT’ ; 
in the first problem step, and the element 
10. 'FIT' ; 
in the later step. 
 Vary codes may also be inserted or removed in passing from one 
problem step to the next . For instance, one might wish to vary the field 
of a quadrupole in one step of a problem and then use the fitted value 
as data in the following step . The first step might then contain the 
element: 
5.01 5.0 10.0 5.0 'QUAD' ; 
and the following step would contain the element 
5. 'QUAD’ ; 
Since, in the second step, the first item on the card contains no vary 
code the vary code is deleted. All other parameters, not being re-specified, are 
left unchanged. 
Several elements may have the same label. If, as in the above 
example, one wished to vary the field of several quadrupoles in one step, 
then pass the final values to the next step, one could give all such 
elements the same label. There might be four quadrupoles, all labeled 
'QUAD', being varied simultaneously. If the data for the next step contain the 
single element 
5. 'QUAD' ; 
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the vary code on all elements labeled 'QUAD' will be deleted. 
The physical parameters of an element may be changed between steps 
of a problem. In the first step a bending magnet may be given a length 
of 5 meters. 
4. 5.0 10.0 0.0 'BEND' ; 
In a succeeding step, its length could be increased to 10 meters by in 
setting the element 
4. 10.0 'BEND' ; 
All parameters, up to and including the one to be changed, must be specified. The 
remaining, if omitted, will be left unchanged from the previous step. 
 
 

MISSING: Table 1, important & interesting! Pag. 18) 
Table 1: Summary of TRANSPORT type codes 
 
PHYSICAL 
ELEMENT 

TYPE 
CODE 

2
nd
 

ENTRY 
3
rd 

ENTRY 
4
th
 

ENTRY  
5
th
 

ENTRY  
6
th
  

ENTRY 
7
th
  

ENTRY 
8
th
 

ENTR
Y  

9
th
  

ENTRY 

BEAN 
 

1.VVVVV
V0 
 

x(cm) 
 

0 (mr) Y(cm) ϕ (mr) L(cm) δ 
(percent) 

P0  

r.m.s. 
ADDITION TO 
BEAN ENVELOPE 
 

1.VVVVV
V00 
 

δx(cm) 
 

Δ0 (mr)  Δy (cm) Δϕ (mr) Δl(cm)  Δδ 
(percent)  

ΔP 
(GeV
/c)   

0 

POLE FACE 
ROTATION 
 

2.V 
 

ANGLE OF 
ROTA TION 
(degrees) 

       

DRIFT 
 

 
3.V 
 

LENGTH 
(metres) 

       

BENDING 
MAGNET 
 

 
4.VVV 
 

LENGTH 
(metres) 

FIELD 
(kG) 

FIELD 
GRADIENT (n-
value) 

     

QUADRIPOLE 
 

5.VV0 
 

LENGTH 
(metres) 

FIELD 
(kG) 

HALF-
APERTURE 
(cm) 

     

TRANSFORM 1 
UPDATE 
 

6.0 
 

0.0 1.0       

TRANFORM 2 
UPDATE 
 

6.0 
 

0.0 2.0       

BEAM CENTROID 
SHIFT 
 

7.0 
 

SHIFT 
(x)(cm) 

SHIFT 
(0) (mr) 

SHIFT (y) 
(cm) 

SHIFT 
(ϕ)(mr) 

SHIFT 
(L)(CM) 

SHIFT(δ 
percent) 

  

ALIGNMENT 
TOLERANCE 
 

8.VVVVV
V0 

DISPLACEMENT 
(x) (cm) 

ROTATION 
(θ) (mr) 

DISPLACEMENT 
(y) (cm) 

 DISPLACEMENT 
(z)(cm) 

ROTATION 
(α)(mr) 

CODE 
NUMB
ER 

 

REPEAT 
CONTROL 
 

9.0 
 

NUMBER OF 
REPEATS 

       

FITTING 
CONSTRAINTS 

10.0 
 

± I? J DESIRED 
VALUE OF (I, 
J) MATRIX 
ELEMENTS 

ACCURACY 
OF FIT 

    

Note: + I is used for fitting a beam (σ)matrix element. –I is used for fitting an RI matrix element. 
     -(I + 20) is used for fitting an R2 matrix element. 
ACCELERATOR 11.0 LENGTH 

(metres) 
E 
(energy 
gain) 
(GeV) 

♦? (phase 
lag) 
(degrees) 

(WAVELEN
GTH) 
(cm) 

    

BEAM 
(Rotated 
Ellipse) 

12.0 THE FIFTEEN CORRELATIONS AMONG THE SIX ELEMENTS (This entry must be proceded by a type 
code 1.0 entry) 

INPUT/OUTPUT 
OPTIONS 

13.0 CONTROL CODE 
NUMBER 

       

ARBITRARY R 
MATRIX 

14.vvvv
vv0 

R(J,I) R(J,2) R (J,3) R (J,4) R (J,5) R (J,6) J  

UNITS CONTROL 
(Transport 
Dimensions) 

15.0 CODE UNIT 
SYMBOL 

SCALE FACTOR 
(if 
required) 

     

QUADRATIC 
TERM OF 
BENDING FIELD 

16.0v 1.0 ϵ (l) = 

Β (
 

  
)2 

Ρ0 in units of tranverse length (cm)   

MASS OF 16.0 3.0 M/m M= mass of      
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PARTICLES IN 
BEAM 

(dimensi
onless) 

electron 

HALF-APERTURE 
OF BENDING 
MAGNET IN x-
PLANE 

16.0 4.0 w/2 (cm)       

HALF-APERTURE 
OF BENDING 
MAGNET IN y-
PLANE (gsp) 

16.0 5.0 g/2 (cm)       

LENGTH OF 
SYSTEM 

16.0 6.0 L 
(metres) 

      

FRINGE FIELD 
CORRECTION 
COEFFICIENT 

16.0 7.0 K1 
(dimensi
onless) 

      

FRINGE FIELD 
CORRECTION 
COEFFICIENT 

16.0 8.0 K2 
(dimensi
onless) 

      

CURVATURE OF 
ENTRANCE FACE 
OF BENDING 
MAGNET 

16.0v 12.0 (l/R1) 
(l/metre
s) 

      

CURVATURE OF 
EXIT FACE OF 
BENDING 
MAGNET 

16.0V 13.0 (l/R2) 
(l/metre
s 

      

FOCAL PLANE 
ROTATION 

16.0 15.0 Angle of focal plane 
rotation. 
See type code 16.0 for 
details. 

     

INITIAL BEAM 
LIME X-
COORDINATE 

16.0 16.0 X0        

INITIAL BEAM 
LIME y-
COORDINATE 

16.0 17.0 Y0        

INITIAL BEAM 
LIME z-
COORDINATE 

16.0 18.0 Z0        

INITIAL BEAM 
LIME 
HORIZONTAL 
ANGLE 

16.0 19.0 θ 0         

INITIAL BEAM 
LIME VERTICAL 
ANGLE 

16.0 20.0 ψ 0       

SECOND-ORDER 
CALCULATIONS 

17.0         

SEXTUPOLE 18.0V LENGTH 
(metres) 

FIELD 
(kG) 

      

SOLENOID 19.VV LENGTH 
(metres) 

FIELD 
(kG) 

      

BEAM ROTATION 20.V ANGLE OF 
ROTATION(deg
rees) 

        

STRAY FIELD 21.0 See later section of 
report 

      

Note: The v’s following the type codes indicate the parameters which may be varied. See section under type code 10.0 
for a detailed explanation of vary  

 
(da controllare perché ho faticato molto nella lettura e 
interpretazione segni!) 
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OUTPUT FORMAT 
 
General appearance 
 
Here we give a brief description of the general appearance of the 
output and its meaning. The user may refer to the sample output shown on 
pages 22 through 27. It is the printed output resulting from the sample 
data shown in the section on input format. In a simple example it is not 
possible to show each of the different type codes. Several of the type 
codes produce output which is not characteristic of all other type codes. 
We therefore refer the user to the sections on the various type codes for 
an explanation of any features peculiar to a given type code. 
The output for each step of a given problem is printed separately. 
The printing for one step is completed before that for the next step is 
begun. Therefore we will describe the output for a single problem step. 
The output shown below is from a problem with two steps. 
 
Initial listing 
 
For each problem step, the program begins by printing out the user's 
input records. 
  
Listing during the calculation (pag.20) 
 
 The program now begins the calculation. If there is no fitting, one 
listing of the beam line will be made. If there is fitting there will 
normally be two listings . The first will represent the beam line before 
any fitting has occurred. The second will be based on the new values of 
the physical parameters which were altered by the fitting process. If 
sequential fitting is employed and an indicator card of two (2) is used 
the first run will be omitted. The user should read the section describing the 
indicator card for further explanation. 
 In any listing the elements are printed in order with their labels 
and physical parameters . Elements with negative type code numbers are 
ignored. Each listed element is preceded by the name of that type of 
element, enclosed in asterisks . All physical elements are listed in this 
way. Some of the other elements are not explicitly listed but produce 
their effect in either the calculated quantities or the listing of the 
beam line. For descriptions of individual cases, the reader should 
consult the sections on the type codes. 
 Calculated quantities appear in the listing as requested in the input 
data. Important cases will be described in greater detail below. The 
physical parameters for each element are printed with the appropriate 
units. For some elements a calculated quantity, not in the input data, 
will appear, enclosed in parenthesis. Such quantities are explained in 
the sections under the individual type codes. 
 
Calculated quantities 
 The important cases of calculated quantities which appear in the 
output are the transfer matrices, the beam matrix, the layout coordinates, 
and the results of the fitting procedure . The transfer and beam matrices 
and layout coordinates appear as requested in the listing of the beam 
line. The results of the fitting procedure appear between the two  
listings. All these quantities are explained in greater detail below. 
 The transfer and beam matrices appear only where requested. A re- 
quest for printing of layout coordinates should be made at the beginning 
of the beam line. The coordinates will then be printed after each physi- 
cal element. In all cases the quantities printed are the values at the 
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interface between two elements. They are evaluated at a point after the 
element listed above them and before the element listed below. For further 
explanation of calculated quantities the user should read the section on the 
mathematical formulation of TRANSPORT, the appendix to the 
manual, and the section on the appropriate type code. For the transfer 
matrix the appropriate type code is thirteen; for the beam matrix it is 
one, and for the coordinate layout it is again thirteen. 
 Quantities relevant to the fitting appear between the two listings 
of the beam line. At each iteration of the fitting procedure a line is 
printed containing the value of the relaxation factor used, the value of 
chi—squared before the iteration was made, and the corrections made to 
each of the varied parameters. Once the fitting is complete the final 
chi-squared and the covariance matrix are printed. For further details 
the user should read the section on type code 10.0, and the section on 
fitting in the appendix. 
 
 
Mancano tabelle pagg. 22,23,24, 25,26,27 
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TITLE CARD 
The title card is the first card in every problem step of a TRANSPORT 
data set. The title card is always required and must be followed by a 
O, a l or a 2 card (see next section) to indicate whether the data to 
follow is new (0 card) or a continuation of a previous data set (a 1 card 
or a 2 card) . 
The title must be enclosed within either quotation marks ('), slashes (/), or 
equal signs (=) on a single card. The string may begin and end in any column (free 
field format) , for example 

'SLAC 20 GEV/C SPECTROMETER' 
or 

/SLAC 20 GEV SPECTROMETER/ 
Note that whichever character is used to enclose the title must not 
be used again within the title itself. 
 
Example of a DATA SET for a single problem step 

 
INDICATOR CARD (pag.29) 
 
 The second card of the input for each step of a problem is the indicator 
card.  
If the data which follow describe a new problem, a zero (0) 
is punched in any column on the card. If the data which follow describe 
changes to be made in the previous step of a given problem, a one (1) or 
two (2) is punched in any column on the card. 
 If a given problem step involves fitting, the program will normally 
list the beam line twice, printing each time the sequence of elements 
along with transfer or beam matrices where specified. The first listing 
uses the parameters of each element before any fitting has taken place. 
The second shows the results of the fitting. If a problem involving 
fitting has several steps, the second run of a given step often differs 
little from the first run of the following step. 
 If the second or subsequent step of a problem involves fitting and 
one wishes to print both runs through the beam line, a one (1) is punched 
on the indicator card. If the first listing is to be suppressed a two (2) 
is punched. If no fitting is involved, the program will ignore the two 
and will do one single run through the system. 
 If the initial listing is to be deleted, 10 is added to the indicator 
to give 10, 11, or 12. In order to be consistent with earlier versions 
of TRANSPORT, an indicator of minus one (-1) is interpreted as a two (2) , 
but nine (9) is not interpreted as twelve (12) . 
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The sample problem input shown on page 14 (?) causes TRANSPORT to do a 
first—order calculation with fitting (0 indicator card) and then to do a 
second—order calculation (1 indicator card) with the data that is the 
result of the fitting. 
 
COMMENT CARDS 
Comment cards may be introduced anywhere in the deck where an 
element would be allowed by enclosing the comments made on each card 
within single parentheses. No parentheses are allowed within the 
parentheses of any comment card. The comments are not stored, but appear 
only in the initial listing of the given problem step. 
 
 
Example of the use of comment cards in a data set 
 
‘Title Card’ 
0 
(THIS IS A TEST PROBLEM TO ILLUSTRATE THE) 
(USE OF COMMENT CARDS) 
elements 
(COMMENTS MAY ALSO BE MADE BETWEEN) 
(TYPE CODE ENTRIES) 
elements 
SENTINEL 
 
LISTING OF AVAILABLE TRANSPORT TYPE CODE ENTRIES 
INPUT BEAM: Type code 1.0 
  
 The phase space and the average momentum of the input beam for a 
TRANSPORT calculation are specified by this element. The input is given 
in terms of the semi-axes of a six—dimensional erect*) beam ellipsoid 
representing the phase space variables x, θ , y, ϕ  , λ , and δ.  
Each of these six parameters is entered as a positive quantity, but should be 
thought of as ±x, ±θ, etc; hence , the total beam width is 2x, the total 
horizontal beam divergence is 2 θ and so forth. 
------------------------------------------------------ 
*) For a rotated (non—erect) phase ellipsoid input, see type code 12.0. 
------------------------------------------------------ 
Usually the BEAM card is the third card in the deck. If other than 
standard TRANSPORT units are to be used, the units specification cards 
(type code 15 .0) should precede the BEAM card. Standard TRANSPORT units 
for x, θ, y, ϕ, λ  and δ are cm, mr, cm, mr, cm and percent. The standard 
unit for the momentum p(O) is GeV/c. Also if a beam line coordinate 
layout is desired, the card specifying that a layout is to be made (a 13.0 
12.0 element), and any initial coordinates (see type code 16.0) all precede 
the BEAM card.  
There are eight entries (all positive) to be made on the BEAM card. 

1. The type code 1.0 (specifies a BEAM entry follows).  
2. One-half the horizontal beam extent (x) (cmv in standard units). 
3. One-half the horizontal beam divergence (θ) (mr). 
4. One-half the vertical beam extent (y) (cm). 
5. One—ha1f the vertical beam divergence (ϕ) (mr) . 
6. One—half the longitudinal beam extent  (λ)(cm). 
7. One—ha1f the momentum spread (δ) (in units of percent Δp/p). 
8. The momentum of the central trajectory [p(O)] (GeV/c) . 

All eight entries must be made even if they are zero (0). As for all 
other type codes, the last entry must be followed by a semicolon, dollar 
sign, or asterisk. Thus a typical BEAM entry might be  
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         Label if desired. 
 

1.   0.5    2.    1.3   2.S    0.   1.5   10 .   '   '   ; 
 
 
meaning, x = ±0,5 cm, θ = ± 2,0 mr, y = ± 1,3 cm, φ = ± 2.5 mr, λ ± 0.0 cm, 
δ = ± i1.5 percent Δp/p, and the central momentum p(O) = 10.0 GeV/c. 
 
The units of the tabulated matrix elements in either the first 
order R or sigma matrix or second order T matrix of a TRANSPORT print—out will 
correspond to the units chosen for the BEAM card. For the above 
example , the R(12) = (X/θ ) matrix element will have the dimensions of 
cm/mr; and the T(236) = (θ/yδ) matrix element will have the dimensions 
mr/(cm ' percent) and so forth. 
 
 The longitudinal extent λ is useful for pulsed beams. It indicates 
the spread in length of particles in a pulse. It does not interact with 
any other component and may be set to zero if the pulse length is not 
important. 
 The phase ellipse (sigma matrix) beam parameters may be printed as 
output after every physical element if activated by a (13. 3. ;) element. 
Alternatively, individual printouts may be activated by a (13. 1. ;) 
element. The projection of the semi—axes of the ellipsoid upon each of 
its six coordinates axes is printed in a vertical array, and the correlations 
among these components indicating the phase ellipse orientations 
are printed in a triangular array (see the following pages). 
 
The phase ellipse beam matrix 
The beam matrix carried in the computer has the following construction: 
  

 x θ  y ϕ  λ  δ  
x σ (11)      
θ  σ (21) σ (22)      
y σ (31) σ (32) σ (33)     
θ σ (41) σ (42) σ (43) σ (44)   
ℓ  σ (51) σ (52) σ (53) σ (54) σ (55)  
δ  σ (61) σ (62) σ (63) σ (64) σ (65) σ (66) 

 
 
The matrix is symmetric so that only a triangle of elements is 
needed. 
In the printed output this matrix has a somewhat different format 
for ease of interpretation: 
 
 

   x θ  y ϕ  λ  
x √ (11) CM      

θ  √ (22) MR r (21)      

y √ (33) CM r (31) r (32)    

ϕ  √ (44) MR r (41) r (42) r (43)   

ℓ   √ (55) CM r (51) r (52) r (53) r (54) ) 

δ  √ (66) PC r (61) r (62) r (63) r (64) r (65) 

 
 
 

where:   r(ij) = 
 (  )

[ (  ) (  )] 
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As a result of the fact that the σ  matrix is positive definite, the 
r(ij) satisfy the relation 
 

| (  )| ≤ 1. 
 
The full significance of the σ (ij) and the r(ij) are discussed in 
detail in the Appendix ("Description of Beam Matrix") . The units are 
always printed with the matrix. 
 
In brief, the meaning of the √σ (ii) is as follows: 
 
√σ(ll) = xmax = the maximum (half) -width of the beam envelope in the 
  x(bend)—plane at the point of the print-out. 
 
√σ (22) = θmax = the maximum (half) —angular divergence of the beam 
  envelope in the x(bend) plane. 
√σ(33) = ymax = the maximum (half)—height of the beam envelope. 
√σ(44) = ϕmax = the maximum (half)—angular divergence of the beam envelope in the 
  y(non—bend)-plane. 
√σ(55) = ℓ max = one—half the longitudinal extent of the bunch of particles. 
√σ(66) = δ = the half—width (1/2 Δp/p) of the momentum interval 
  being transmitted by the system. 
 
The units appearing next to the √σ(ii) in the TRANSPORT print—out 
are the units chosen for coordinates x, θ , y, ϕ , λ and δ  = Δp/p, respectively. 
 
To the immediate left of the listing of the beam envelope size in a 
TRANSPORT print—out , there appears a column of numbers whose values will normally 
be zero. These numbers are the coordinates of the centroid of 
the beam phase ellipse (with respect to the initially assumed central 
trajectory of the system) . They may become non-zero under one of three 
circumstances: 
1) when the misalignment (type code 8.0) is used, 
2) when a beam centroid shift (type code 7.0) is used, or 
3) when a second-order calculation (type code 17.0) is used. 
 
To aid in the interpretation of the phase ellipse parameters listed 
above, an example of an (x,θ) plane ellipse is illustrated below. For 
further details the reader should refer to the Appendix of this report. 
 

 
 
The area of the ellipse is given by: 
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A = π (det σ)½ = πxmax θ xint = πxint θmax 
 
The equation of the ellipse is: 
 

Yx2 + 2αxθ  + βθ2  = ϵ  
Where: 

   σ = [
      

      
] = ϵ [

   
   

] 

 
and 
 

βγ – α
2 = 1 , r21 = r12 = 

   

√    
   

  

√  
 

 
r.m.s. addition to the BEAM 
To allow for physical phenomena such as multiple scattering, provision has been 
made in the program to permit an r.m. s. addition to the beam envelope. There are 
nine entries to be included: 

1. Type code 1.0 (specifying a BEAM entry follows). 
2. The r.m.s. addition to the horizontal beam extent (Δx) (cm). 
3. The r.m.S. addition to the horizontal beam divergence (Δθ) (mr). 
4. The r.m.s. addition to the vertical beam extent (Δy) (cm). 
5. The r.m.s. addition to the vertical beam divergence (Δθ) (mr) 
6. The r.m.s. longitudinal beam extent (Δλ) (cm). 
7. The r.m.s. momentum spread (Δδ) (in percent Δp/p). 
8. The momentum change in the central trajectory [Δp(O)] in (GeV/c). 
9. The code digit 0. indicating an r.m.s. addition to the BEAM is 

 being made . 
 
The units for the r.m. s. addition are the same as those selected 
for a regular BEAM type code 1.0 entry. Thus a typical r.m.s. addition 
to the BEAM would appear as follows: 
 

1.   .1   .2   .15   .3   0.   .13   -0.1   0.   ; 
 

where the last entry (0.) preceding the semicolon signifies an r.m.s. 
addition to the BEAM is being made and the next to the last entry indi 
cates a central momentum change of -0.1 GeV/c. 
 
 
 
FRINGING FIELDS and POLE-FACE ROTATIONS for bending magnets:  
Type code 2.0 (pag.37) 
 
To provide for fringing fields and/or po1e—face rotations on bending 
magnets, the type code 2.0 element is used. 
 
There are two parameters: 
 
1 - Type code 2.0. 
2 — Angle of po1e—face rotation (degrees). 
 
The type code 2.0 element must either immediately precede a bending 
magnet (type code 4.0) element (in which case it indicates an entrance 
fringing field and pole—face rotation) or immediately follow a type 
code 4. 0 element (exit fringing field and pole—face rotation) with no 
other data entries between *), A positive sign of the angle on either 
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entrance or exit po1e—faces corresponds to a non-bend plane focusing 
action and bend plane defocusing action. 
 
For example , a symmetrically oriented rectangular bending magnet 
whose total bend is 10 degrees would be represented by the three entries 
2.   5. ;     4. ——- ;    2.     5. ; 
 
The angle of rotation may be varied. For example , the element 
2.1    5.   ; would allow the angle to vary from an initial guess of 
5 degrees to a final value which would, say, satisfy a vertical focus 
constraint imposed upon the system. See the type code 10.0 section for 
a complete discussion of vary codes. 
 
Even if the pole—face rotation angle is zero, 2.   O.   ; entries 
must be included in the data set before and after a type code 4. 0 entry 
if fringing—fie1d effects are to be calculated. 
 
A single type code 2.0 entry that follows one bending magnet and 
precedes another will be associated with the latter. 
 
___________________________________ 
*) It is extremely important that no data entries be made between a type code 2 .0 and a type code 4. 
0 entry. If this occurs, it may result in an incorrect matrix multiplication in the program and hence 

an incorrect physical answer. If this rule is violated, an error message will be printed. 
_____________________________________ 
 
Should it be desired to misalign such a magnet, an update element 
must be inserted immediately before the first type 2 .0 code entry and the 
convention appropriate to misalignment of a set of elements applied, since, 
indeed, three separate transformations are involved. See section under 
type code 8.O for a discussion of misalignment calculations and the section under 
type code 6.0 for a discussion of updates. 
The type code signifying a rotated pole-face is 2.0. The input format is: 
 
 
  
       Label (if desired) 
 
 

  2.    β .   ‘RO’   ;   
 
The units for β are degrees.   
 
Pole—face rotation matrix 
 
The first—order R matrix for a pole-face rotation used in a 
TRANSPORT calculation is as follows: 
 
 

   R = 

[
 
 
 
 
 
 

      
    

  
     

      

   
    (   )

  
   

      
      ]

 
 
 
 
 
 

 

 
 
Definitions:  
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β  = angle of rotation of pole face (see figure on following page for sign 
convention of β) 
ρ0  = bending radius of central trajectory 
g = total gap of magnet 
ψ = correction term resulting from spatial extent of 
   fringing fields **) 
 

where    ψ = K1 (
 

  
) (

       

    
)  [       (

 

  
)      ]* 

 
------------------------------------------------------- 
*)See type code 16.0 for input formats for g, K1 , and K2 TRANSPORT entries.  
**)See SLAC—754) (page 74)?? for a discussion of ψ . 
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didascalia  
FIELD BOUNDARIES FOR BENDING MAGNETS 
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The TRANSPORT sign conventions for X, β, R and h are all positive as shown in the 
figure. The positive y direction is out of the paper. Positive β's imply 
transverse focusing. Positive R's (convex curvatures) represent negative sextupole 
components of strength 
S = (- h/2R) sec

3
 β. (See SLAC-75, page 71.)?? 

 
 
 
 
DRIFT: Type code 3.0 
A drift space is a field-free region through which the beam passes. 
There are two parameters: 
1 — Type code 3.0 (specifying a drift length). 
2 - (Effective) drift length (metres) . The length of a drift 
space may be varied in either first:- or second—order fitting. 
 
Typical input format for a DRIFT: 
 
        Label (if desired) (not to 
       exceed 4 spaces between  quotes). 
    3.   6.   ‘D1’   ; 
 
     
DRIFT space matrix 
The first—order R matrix for a drift space is as follows: 
 

    

[
 
 
 
 
 
      
      
      
      
      
      ]

 
 
 
 
 

 

 
 
where 
   L = the length of the drift space. 
 
 
The dimensions of L. are those chosen for longitudinal length via a 
 
  units symbol  
    scale factor (if needed)  
  
15. 8. '   ' ; type code entry (if used) preceding the BEAM (type code 1.0) 
card. If no 15. 8. entry is made, the units of L. will automatically be 
in metres (standard TRANSPORT units) 
 
 
 
WEDGE BENDING MAGNET: Type Code 4.0 
 
A wedge bending magnet implies that the central trajectory of the 
beam enters and exits perpendicularly to the pole-face boundaries (to 
include fringing-field effects and non—perpendicu1ar entrance or exit 
boundaries —— see type codes 2.0 and 16.0). 
 
There are four first-order parameters to be specified for the wedge 
magnet via type code 4.0: 
1 — Type code 4.0 (specifying a wedge bending magnet). 
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2 — The (effective) length L of the central trajectory in metres . 
3 — The central field strength B(O) in kG, 
  B(0) = 33.356 (p/ρo), 
 where p is the momentum in GeV/c and ρ0 is the bending radius of 
 the central trajectory in metres . 
4 — The field gradient (n—value , dimensionless); where n is defined 
by the equation 
 By(x,O,t) = By(0,0,t) (1 - nhx + ...) ,  
where 
 H= 1/ρ0. See SLAC-75 (page 31) 

4)
. 

 
The quantities L, B(O) , and n may be varied for first—order fitting 
(see type code 10.0 for a discussion of vary codes). 
 
The bend angle in degrees and the bend radius in metres are printed 
in the output. 
 
A typical first—order TRANSPORT input for a wedge magnet is 
        label (not to exceed 4 spaces) 
 

  4.    1.    B.    n.    ‘  ‘   ; 
 
If fringing field effects are to be included, a type code 2.0 entry 
must immediately precede and follow the pertinent type code 4. 0 entry (even 
if there are no pole—face rotations) . Thus a typical TRANSPORT input for 
a bending magnet including fringing fields might be: 
    Labels (not to exceed I 4 spaces) if desired 
 

2.   0.   ‘  ‘   ; 
4.   L.   B(0).   n.   ‘  ‘   ; 
2.   0.   ‘  ‘   ; 
 

For non-zero pole-face rotations a typical data input might be 
 2.   10.   ;   4.  L. B(0).   n.   ;   2.   20.   ; 
 
Note that the use of labels is optional and that all data entries may be 
made on one line if desired. 
 The sign conventions for bending magnet entries are illustrated in 
the following figure. For TRANSPORT a positive bend is to the right 
looking in the direction of particle travel. To represent a bend in 
another sense, the coordinate rotation matrix (type code 20.0) should 
be used as follows: 
  A bend up is represented by rotating the (x, y) coordinates by 
-90.0 degrees about the (z) beam axis as follows: 
 
    Labels (not to exceed 4 spaces) 
      if desired 
 20. -90.   ' '   ;    
 2. β(1).   ' '   ; 
 4. L.   B.   n.   ' '   ; 
 2. β(2).   ' '   ; 
 20. +90.   ' '   ; (returns coordinates to their initial 
    orientation) 
 
A bend down is accomplished via: 
 20.   +90.   ‘  ‘   ; 
 2.  
 4. 
 2. 
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 20,   -90.   ‘  ‘   ; 
 
A bend to the left (looking in the direction of beam travel) is 
accomplished by rotating the x, y coordinates by 180 degrees, e.g. 
 20.    180. ' '   ; 
 2.  
 4. 
 2. 
 20,   -180.   ‘  ‘   ; 
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(didascalia del disegno) 
FIELD BOUNDARIES FOR BENDING MAGNETS 
The TRANSPORT sign conventions for X, β, R and h are all positive as shown in the 
figure, The positive y direction is out of the paper. Positive β's imply 
transverse focusing. Positive R's (convex curvatures) represent negative sextupole 
components of strength 
s = (- h/ZR) sec3 5. (See SLAC-75, page 71.) 
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The field expansion for the midplane of a bending magnet is taken 
from Eq. (18) page 31 of SLAC—75, thereby defining the dimensionless 
quantities n and β as follows: 
  
 By (x,0,t) = By (0,0,t) [1 – nhx + βh

2
x
2
 + γh

3
x
3
 + …] 

 
The type code signifying a BEND is 4.0. The input format for a 
TRANSPORT calculation is: 
       Label(not to exceed 4 spaces)  
 
   4.  L.   B.   n.   ' '   ; 
 
If n is not included in the data entry, the program assumes it to 
be zero. A β  entry for a second—order calculation is made via the 
16.0 1.0 element. (Do not confuse this β with a po1e—face rotation.) 
 
The standard units for L and B are metres and kG. If desired, these 
units may be changed by 15.0 8.0 and 15.0 9.0 type code entries preceding 
the BEAM Card. 
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QUADRUPOLE: Type code 5.0 (pag.48) 
 
A quadrupole provides focusing in one transverse plane and defocusing in the 
other. 
 
There are four parameters to be specified for a TRANSPORT calculation: 
 1 - Type code 5.0 (specifying a quadrupole). 
 2 -(Effective) magnet length L (in metres) . 
 3 - Field at pole tip B (in kG) . A positive field implies horizontal 
 focusing; a negative field, vertical focusing. 
 4 - Half-aperture a (in cm) . Radius of the circle tangent to the 
 pole tips. 
 
The length and field of a quadrupole may be varied in first—order 
fitting. The aperture may not be. 
 
The strength of the quadrupole is computed from its field, aperture 
and length. The horizontal focal length is printed in parentheses as 
output. A positive focal length indicates horizontal focusing and a negative focal 
length indicates horizontal defocusing. The quantity 
actually printed is the reciprocal of the (θ/x) transfer matrix element 
(1/R2 1) for the quadrupoles . Thus two identical quadrupoles of opposite 
polarity will have different horizontal focal lengths due to the difference 
between the sine and the hyperbolic sine. 
 
The type code for a QUAD is 5.0. The input format for a typical 
data set is: 
     Label (if desired) not to exceed 
      4 spaces between quotes 
 5.   L.   B.   a.   ‘  ‘   ; 
 
The standard TRANSPORT units for L, B, and a are metres , kG, and cm, 
respectively. If other units are desired they must be chosen via the 
appropriate 15.0 type code entries preceding the BEAM (type code 1.0) 
card. 
 
First-order quadrupole matrix  
 

  

[
 
 
 
 
 
 
        

 

  
          

                    

          
 

  
         

                     

      
      ]

 
 
 
 
 
 
 

 

 

These elements are for a quadrupole which focuses in the horizontal 
(x) plane (B positive). A vertically (y-plane) focusing quadrupole 
(B negative) has the first two diagonal submatrices interchanged. 
 
Definitions:  L = the effective length of the quadrupole 
   a = the radius of the aperture 
   B0 = the field at radius a 
   K

2
q= (B0/a) (1/Bρ0), where (Bρ0) = the magnetic rigidity 

    (momentum) of the central trajectory. 
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TRANSFORM 1 update*): Type code 6. 0. 1. 
 
To re—initia1ize the matrix TRANSFORM 1 (the product of the R 
matrices, Rl) use type code 6.0. A (6. O. 1.  ;) card effects an update 
of the R1 matrix and initiates the accumulation of a new product matrix 
at the point of the update. This facility is often useful for misaligning 
a set of magnets or fitting only a portion of a system. 
 
The matrix R1 is updated by no other element. It is not used in the 
calculation of the beam matrix. The beam matrix is calculated from the 
auxiliary transfer matrix R2 described on the next page. 
 
A TRANSFORM 1 matrix will be printed at any position in the data 
set: where a (13. 4.  ;) entry is inserted. 
 
See the following section for the introduction of an auxiliary trans- 
formation matrix R2 (TRANSFORM 2) to avoid the need for TRANSFORM 1 up- 
dates. 
 
The (6. O. 1.  ;) card also causes an update of the R2 matrix. 
 
--------------------------------------- 
*) By "updating" we mean initiating a new starting point for the accumulation (multiplication) of the 
R matrix. At the point of update the previous accumulation is discontinued. When the next element 
possessing a transfer matrix is encountered, the accumulated transfer matrix R1 is set equal to the 

individual transfer matrix R for that element. Accumulation is resumed thereafter. 
--------------------------------------- 
 
 
AUXILIARY TRANSFORMATION MATRIX (R2): Type code 6. O. 2. 
 
 The R1 matrix represents the accumulated transfer matrix from either 
the beginning of the beam line or the last explicit R1 update (6. O. 1. ;). 
However several elements in TRANSPORT which affect the beam matrix cannot 
be represented in any transfer matrix. To avoid update complications with R1 an 
auxiliary transfer matrix R2 exists. The beam matrix is then 
calculated from the R2 matrix and the beam matrix at the last R2 update. 
 
 Both the R1 and R2 matrices are normally available for printing. However 
there is no redundancy in computer use, since, internally to the 
program only R2 is calculated at each element. The matrix R1 is calculated 
from R2 only as needed. 
 
 The R2 matrix is updated explicitly via a (6. 0. 2.  ;) entry. It may be 
printed by a (13. 24.  ;) entry. Constraints on R2 are imposed similarly to those 
on R1. For details see the section describing type code 10.0. 
 
 The complete list of elements which update TRANSFORM 2 is: 
 
1) a beam type code 1.0 entry 
2) the (6. 0. 1.  ;) entry 
3) the (6. O. 2.  ;) entry 
4) a centroid shift type code 7.0 entry 
5) a misalignment type code 8.0 entry 
6) a stray field type code 21.0 entry. 
 
Please note that automatic updates of TRANSFORM 2 occur when an 
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align element (type code 8.) is inserted specifying the misalignment of all 
subsequent bending magnets. These TRANSFORM 2 updates take place immediately 
before and immediately after any bending magnet which has 
either the entrance or exit fringe fields specified via a type code 2 
entry. 
 
 
SHIFT IN THE BEAM CENTROID: Type code 7.0 
 
 Sometimes it is convenient to redefine the beam centroid **) such 
that it does not coincide with the TRANSPORT reference trajectory. Provision has 
been made for this possibility via type code 7.0. Seven parameters are required: 
 
 1 — Type code 7.0. 
(2 to 7) — the coordinates x, θ, y, ϕ, λ, and δ  defining the shift in the 
 location of the beam centroid with respect to its previous 
 position. The units for x, θ, y, ϕ, λ, δ  are the same as 
 those chosen for the BEAM (type code 1.0 entry), normally cm, 
 mr, cm, mr, cm, and percent. 
 
Any or all of the six beam centroid shift parameters may be varied in first-order 
fitting. The centroid position may then be constrained at any later point in the 
beam line by this procedure. 
 
 The transformation matrix R2 is updated by this element. 
 
In order for this code to function properly, the initial BEAM entry 
(type code 1.0) must have a non—zero phase space volume, for example a 
  1.  0   0   0   0   0   0 p(O). ; 
 
BEAM entry is not permissible when calculating a shift in the beam 
centroid; whereas a 
  1. 1. 1. 1. 1. 1- 1- p(0).   ; 
entry (non-zero phase volume) is acceptable. 
 
------------------------------------------------------- 
**) By "beam centroid" we mean the centre of the beam ellipsoid. 
------------------------------------------------------- 

 
MAGNET ALIGNMENT TOLERANCES: Type code 8.0 
 
 The first—order effects of the misalignment of a magnet or group of 
magnets are a shift in the centroid of the beam and a change in the beam 
focusing characteristics. Two varieties of misalignment are commonly 
encountered: 1) the magnet is displaced and/or rotated by a known amount; 
or 2) the actual position of the magnet is uncertain within a given tolerance. 
TRANSPORT has the capability of simulating the misalignment of 
either single magnets or entire sections of a beam line. Any combination 
of the above alternatives may be simulated through the use of the "align" 
element. The results may be displayed in either the printed output of 
the beam (sigma) matrix or tabulated in a special misalignment table 
(described below). 
 
There are eight parameters to be specified: 
 

1. Type code 8.0 (specifying a misalignment). 
2. The magnet displacement in the horizontal direction (cm). 
3. A rotation about the horizontal axis (mt). 
4. A displacement in the vertical direction (cm).  
5. A rotation about the vertical axis (mr). 
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6. A displacement in the beam direction (cm). 
7. A rotation about the beam direction (mr). 
8. A three-digit code number (defined below) specifying the type 

of misalignment. 
 
The three displacements and three rotations comprise the six degrees 
of freedom of a rigid body and are used as the six misalignment coordinates. The 
coordinate system employed is that to which the beam is referred at the point it 
enters the magnet.  For example, a rotation of a 
bending magnet about the beam direction (parameter 7 above) is referred 
to the direction of the beam where it enters the magnet. The units employed are 
the standard TRANSPORT units shown above, unless redefined by 
type code 15. entries. If the units are changed, the units of the misalignment 
displacements are those determined‘ by the 15. 1. type code 
entry; the units for the misalignment rotations are those determined by 
the 15. 2. type code entry. 
The misalignment of any physical element or section of a beam line 
may be simulated. Misaligned sections of a beam line may be nested. A 
beam line rotation (type code 20.) may be included in a misaligned section.  
Thus, for example, one can simulate the misalignment of magnets 
that bend vertically. The arbitrary matrix (type code 14.) may not be 
included in a misaligned section. A misalignment must never be included 
in a second—order run (type code 17.) . 
 
 A misalignment element may indicate that a single magnet or section 
of the beam line is to be misaligned, or it may indicate that all subsequent 
magnets of a given type (quadrupoles and/or bending magnets) are to 
be misaligned. The type of misalignment is specified in the three—digit 
code number, and the location of the type code 8. align element depends 
on the type of misalignment. 
 If a misalignment pertains to a single magnet or a single section of 
the beam line, then the misalignment element (type code 8.) must directly 
follow that magnet or section of the beam line. If a misalignment element 
indicates that all subsequent magnets of a given type are to be 
misaligned, it must precede the first of such magnets. Further description  
of the available types of misalignment is given in the table below. 
The results of the misalignment may be displayed in either the beam 
(sigma) matrix or in a misalignment table. If the results are displayed 
in the beam (sigma) matrix, then that matrix is altered by the effects of 
the misalignment. The effects of additional misalignments cause further 
alterations, so that at any point along the beam line, the beam (sigma) 
matrix will contain the combined effects of all previous misalignments. 
 The misalignment table can be used to show independently the effects 
on the beam matrix of a misalignment in each degree of freedom of each 
misaligned magnet. Each new misalignment to be entered in the table 
creates a new set of six duplicates of the beam matrix. Printed for each 
duplicate beam matrix are the centroid displacement and the beam half 
width in each of the six beam coordinates. Each of the six matrices shows 
the combined result of the undisturbed beam matrix and the effect of the 
misalignment in a single coordinate of a single magnet or section of the 
beam line. In a single TRANSPORT run the results of misaligning up to 
ten magnets or sections of the beam line may be included in the misalign 
ment table. Further requests for entry in the misalignment table will be 
ignored. Examples of such a table and the input which generated it are 
shown below. 
 When the user specifies that the actual position of the magnet(s) is 
uncertain within a given tolerance, the printout will show a change in 
the beam (sigma) matrix resulting from the effects of the misa1ignment(s) . 
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Thus, if one wishes to determine the uncertainty in the beam centroid resulting 
from uncertainties in the positioning of the magnets, the initial 
beam dimensions should be set to zero, i.e. the beam card entry at the 
beginning of the system should appear as follows: 
 
 1. O. O. O. O. O. O. p(O). 
  
 If it is desired to know the effect of an uncertainty in position on 
the beam focusing characteristics, then a non—zero initial phase space 
must be specified. The printout will then show the envelope of all pos 
sible rays, including both the original beam and the effects of the misalignment . 
  
 If the misalignment is a known amount, it may affect the beam centroid as 
well as the beam dimensions. Therefore one should place on the 
BEAM card the actual dimensions of the beam entering the system. For a 
known misalignment, the program requires that the initial beam specified 
by type code 1 must be given a non-zero phase volume, to insure a correct 
printout. 
 
 An align element pertaining to a single magnet or section of the 
beam line updates the BEAM (sigma) matrix and the R2 matrix, but not the 
R1 matrix. A misalignment element which indicates misalignment of all 
subsequent magnets of a given type will update the BEAM (sigma) matrix 
and the R2 matrix before each bending magnet with fringe fields and after 
each misaligned magnet of any type. 
 
 The tolerances may be varied. Thus, type—vary code 8.111111 permits 
any of the six parameters (2 through 7 above) to be adjusted to satisfy 
whatever BEAM constraints may follow. For fitting , a misalignment must 
pertain to a single magnet or single section of the beam line, and the 
results must be displayed in the beam (sigma) matrix. (See the section 
under type code 10. for a discussion of the use of vary codes.) 
 
The meaning of the options for each digit of the three—digit code 
number is given in the following table. 
 

A. The units position specifies the magnet(s) or section of the 
beam line to be misaligned. 
 
CODE      INTERPRETATION (pag.57) 
NUMBER  
---------------------------------------------------------------------- 
XX0 The single magnet (type code element) immediately preceding 
 the align card it to be misaligned. A bending magnet with 
 fringe fields should be misaligned using one of the options 
 described below. 
 
XX1 The last R1 matrix update (the start of the beam line or a 
 6. O. 1. type code entry) marks the beginning of the section to be 
 misaligned. The misalignment element itself marks the end. The section is 
 treated as a unit and misaligned as a whole. The misalignments of 
 quadrupole triplets and other combinations involving more than two quadru- 
 poles may be studied using this code digit. 
 
XX2 The last R2 matrix update (see type code 6. for a list of elements which 
 update R2) marks the beginning of the misaligned section. The misalignment 
 element marks the end. This option makes use of the fact that R2 matrix 
 updates do not affect the R1 matrix. 
 A bending magnet with fringing fields or pole face rotations 
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 (type code 2.) should be misaligned using this option. See 
 examples 1 and 2 below for an illustration of this. 
  
 An array of quadrupoles provides another example of the use 
 of this option. By successive application of align elements, the elements 
 of a quadrupole triplet could be misaligned relative to each other, and 
 then the triplet as a whole could be misaligned. See example 3 below for an 
 illustration of this. 
XX3 All subsequent bending magnets and quadrupoles are independently misaligned 
 by the amount specified. This option is useful in conjunction with the 
 tabular display of the misalignment results (see below) . A bending magnet, 
 with fring ing fields included, is treated as a single unit and misaligned 
 accordingly. 
 
XX4 All subsequent bending magnets, including fringing fields, are 
 independently misaligned by the amount specified. See XX3 above for further 
 comments. 
 
XX5 All subsequent quadrupoles are independently misaligned by 
 the amount specified. See example 4 below for an illustration of this. See 
 XX3 above for further comments. 
 

B. The tens position defines the mode of display of the results of 
the misalignment . 
 
X0X.  The beam matrix contains the results of the misalignment. 
 The beam matrix is printed wherever a 13. 1. card is 
 encountered. The beam matrix will then contain contributions 
 from all previous misalignments. 
 
X1X A table is used to store the results of misalignments. The 
 effect of up to ten independently misaligned magnets may be 
 shown in the table in a single run . The table is printed via 
 a 13 . 8. card, and may be compared with the undisturbed 
 beam matrix (printed by a 13. 1.  ;  card) at any point. An 
 example of such a table is shown below. 
 

C. The hundreds position distinguishes between an uncertainty in 
position (OXX.) or a known displacement (1XX.) . 
 
 Any combination of digits may be used to define the exact circumstances 
intended. Thus, code 111. indicates the deliberate displacement 
of a set of magnets (referred to the point where the beam enters the set) , 
with the results to be stored in a table. 
 
 
Example N0. 1: A bending magnet with a known misalignment 
 
 A bending magnet (including fringe fields) misaligned by a known 
amount might be represented as follows: 
 
 3. L(1).   ;  

 6. 0.   2.   ;  
 2. 0.   ;   4.   1.   B.   n.   ;   2.   0.   ;  
 8. 0.   0.   0.   0.   0.   2.   102.   ;  
 3. L(2).   ; 
 

 This represents a known rotation of the bending magnet about the incoming 
beam direction (z axis) by 2.0 mr. The result of this misalignment will be a 
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definite shift in the beam centroid, and a mixing of the horizontal and vertical 
coordinates. The use of the 6. O. 2. Transform 2 update and the misalignment code 
number XX2 is necessary because the magnetic array (bending magnet + fringing 
fields) consists of three type code elements instead of one. 
 
 
 
 
Example N0. 2: A bending magnet with an uncertain position 
  
 A bending magnet having an uncertainty of 2 mr in its angular positioning 
about the incoming beam (z axis) would be represented as follows: 
 
 3. L(1).   ;  

 6. 0.   2.   ;  
 2. 0.   ;   4.   L.   B.   n.   ;   2.   0.   ;  
 8. 0.   0.   0.   0.   0.   2.0   002.   ;  
 3. L(2).   ; 

 
 
 To observe the uncertainty in the location of the outcoming beam 
centroid, the input BEAM card should have zero phase space dimensions as 
follows: 
 

1. O. O. O. O. 0. 0. p(0).   ; 
 

 If the beam dimensions on the input BEAM card are non—zero, the resultant 
beam (sigma) matrix will show the envelope of possible rays, including both the 
input beam and the effect of the misalignment. 
 
 
 
Example No. 3: A misaligned quadrupole triplet 
 
 One typical use of both the R1 and R2 matrices is to permit the 
misalignment of a triplet. For example, an uncertainty in the positions 
within the following triplet 
 
 5. 1. -8. 10. ; 
 5. 2. 7. 10. ; 
 5. 1. -8. 10. ; 
 
may be induced by appropriate 8. elements as noted: 
 
 6. O. 1.  ; 
 5. 1. -8. 10. ; 
 6. O.  2. ; 
 5. 2.  7. 10. ; 
 5. 1 . -8. 10. ; 
 8. ——— ——— ——— ——— ——— ——— OOO. ; 
 8. ——— ——— ——— ——— ——— ——— O02. ; 
 8. ——— ——— ——— ——— ——— ——— O01. ; 
 
The first 8. card in the list refers to the misalignment of the 
third magnet only. The second 8 . card refers to the misalignment of the 
second and third magnets as a single unit via the R2 matrix update (the 
6. O. 2.  ; entry). The last 8. card refers to the misalignment of the 
whole triplet as a single unit via the R1 matrix update (the 6 . O. 1 . ; 
entry) - 
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 The comments about the BEAM card (type code 1. entry) in example 2 
above are applicable here also. 
 
Example N0. 4: Misaligned quadrupoles in a triplet (pag. 62) 
 
 Individual uncertainties in the positions of the quadrupoles in the 
triplet in example no. 3 above may be induced by a single misalignment as follows: 
  8. --- --- --- --- --- --- 015.  ; 
  5. 1.  -8.  10.  ; 
  5. 2.   7.  10.  ; 
  5. 1.  -8.  10.  ; 
 
 The effect of each misalignment coordinate on each quadrupole will 
be stored separately in a table. This table is printed wherever a 
13. 8. type code is inserted. 
 
Mancano tabelle pag. 63, 64, 65, 66 del manuale 
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REPETITION: Type code 9.0 (pag.67) 
 
 Many systems include a set of elements that are repeated several 
times . To minimize the chore of input preparation, a 'repeat ' facility 
is provided.  
 
There are two parameters: 
 1 - Type code 9.0 
 2 — Code digit. If non-zero, it states the number of repetitions 
 desired from the point it appears . If zero it marks the end 
 of a repeating unit. 
 
For example, a total bend of 12 degrees composed of four 3-degree 
bending magnets each separated by 0.5 metres could be represented by 
9. 4. ; 4. --- ; 3. .5  ;  9. O. ; Those elements (in this case a bend 
and drift) between the 9. 4. ; and 9. O. ; would be employed four times. 
 There is no indication of the 9.0 cards in the printed TRANSPORT 
output when calculating except for the repeated listing of the elements 
they control . 
 Vary codes may be used within a repeating unit in the usual fashion. 
However all repetitions of a given varied element will be coupled. 
 Repeat cards may be nested four deep. By "nesting" we mean a repeat 
within a repeat. An example is given below. 
 
Example of Nesting  

 
The total length of this sequence is: 
2*(10. + 3*(29 + 4*50)+1.5) =1343 
 
 
VARY CODES and FITTING CONSTRAINTS: Type code 10.0 
 
 Some (not all) of the physical parameters of the elements comprising 
a beam line may be varied in order to fit selected matrix elements. In 
a first—order calculation one might fit elements of the R1 or R2 transformation 
matrices or the beam (sigma) matrix. In second order one might constrain an 
element of the second—order matrix T1 or minimize the net contribution of 
aberrations to a given beam coordinate. Special constraints 
are also available. 
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 One may not mix orders in fitting. First order vary codes and constraints 
must be inserted only in a firs t—-order calculation, and similarly for second 
order. 
 The physical parameters to be varied are selected via 'Vary Codes' 
attached to the type codes of the elements comprising the system. The 
fitting constraints on matrix elements are selected via type code 10.0 
entries placed in the system where the constraint is to be imposed. 
 
Vary codes 
 
 Associated with each physical element in a system is a vary code 
which specifies which physical parameters of the element may be varied. 
This code occupies the fraction portion of the type code specifying the 
element. It has one digit for each parameter, the digits having the 
same order in the code as the physical parameters have on the card. A 
'0' indicates the parameter may not be varied; a '1' that it may be. 
For instance, 3.0 is the combined type (3) and vary code (0) for a drift 
length which is to remain fixed; 3. 1 indicates a drift length that may 
be varied (by the virtue of the . 1). The type code 4,010 indicates a 
bending magnet with a variable magnetic field. In punching the code 3. O, 
the zero need not be punched. In punching the 4.010 code, the first zero 
must be punched but the second zero need not be. 
 
First-order vary codes 
 
In a first—order run the following parameters marked v may be varied, 
those marked 0 may not be varied. 
BEAM ……   l.vvvvvvO — All components of the input beam may be 
   varied, except the momentum. 
R.M.S. ADD1TION..  l.vvvvvvOO — All components of an r.m.s. addition may 
   be varied except the momentum change Ap. 
ROTAT. . . . . .  2.v - The pole face angle of a bending magnet may be 
   varied. 
DRIFT...   3.v - The drift length may be varied. 
BEND. . . . . . . 4 .vvv - The length, the field, and/or the n—value may 
   be varied. 
QUAD.......   5.vvO - The length may be varied; the field may be, 
   the aperture may not be. 
AXIS SHIFT..  7.vvvvvv — Any of the axis shift parameters may be 
   varied. 
ALIGN.. . . . .  8.vvvvvvO — Any of the alignment parameters may be 
   varied. 
INITIAL   l6.0v — Any of the three initial position floor coordi- 
COORDINATES"  nates or two angle coordinates may be varied. 
MATRIX.... .  14.vvvvvvO — Any of the first order matrix elements 
   may be varied. 
SOLENOID. . .  19.vv — The length and/or field may be varied. 
BEAM ROTATION. . .  20.v — The angle of rotation may be varied. 
 
 The use of the permissive 'may' rather than the imperative 'will' 
in discussing variables is meaningful. The program will choose the parameters  
it will vary from among those that it may vary. In general it chooses to vary 
those parameters that have the greatest influence upon the conditions to be fit. 
 
Second-02"de1~ vary codes 
  
 In a second—order run the following parameters may be varied: 
DRIFT. . . . .  3.v — The drift length may be varied. Variation of a drift 
   length should be done with caution as it may affect the 
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   first-order properties of the beam line . But inversely  
   coupled drift spaces straddling a sextupole will, for example, 
   show only second-order effects. 
ϵ (1). . . . . .  16.0v 1. — The normalized quadratic term (sextupole component) 
   in the midplane expansion for the field of a bending magnet 
   may be varied. 
1/R1. . . . ..  16.0v 12. - The pole face curvature of a bending magnet 
   entrance may be varied. 
1/R2. . .   16.0v 13. — The pole face curvature of a bending magnet 
   exit may be varied. 
SEXTUPOLE   18. Ov — The field strength may be varied. 
 
 The special parameter cards (type code 16.0) once introduced apply 
to all subsequent magnets in a beam line until another type code 16. O 
specifying the same parameter is encountered. Thus if such a parameter 
is varied, the variation will apply simultaneously to all subsequent 
magnets to which it pertains. The variation will persist until the parameter or 
vary code attached to the parameter is changed by the introduction of another type 
code 16.0 card specifying the same parameter. 
 
Coupled vary codes 
 
 It is possible to apply the same correction to each of several 
variables. This may be done by replacing the digit 1 in the vary code with one of 
the digits 2 through 9, or a letter A through Z. All such variables whose vary 
digits are the same , regardless of position will receive the same correction. For 
example , the three type—vary codes (5. 0A, 5. O1 , 5. 0A) might represent a 
symmetric triplet. The same correction will be made to the first and third 
quadrupoles, guaranteeing that the triplet will remain symmetric. 
 If a vary digit is immediately preceded by a minus sign, the computed 
correction will be subtracted from, rather than added to, this variable. Thus 
parameters with the same vary digit, one of them being preceded by a minus sign, 
will be inversely coupled. For example the type-vary code sequence (3.B, 5.01, 3.-
B) will allow the quadrupole to move without altering the total system length. 
 
 Vary digits may also be immediately preceded by a plus sign without 
changing their meaning. Thus 5.0A is the same as 5.0+-A. For historical 
reasons, the vary digits (9 and 4), (8 and 3), and (7 and 2) are also 
inversely coupled. Inverse coupling may not be used with type codes 
1.0 or 8.0. 
 The total number of independent variables in a first-order run is 
limited to 20 by reasons of the mathematical method of fitting and to 
10 for a second—order run. So far as this limit is concerned, variables 
that are tied together count as one. Variables within repeat elements 
(type code 9.0) also count only one. 
 
Possible fitting constraints 
 A variety of possible constraints is available. Fitting may be done 
in either first— or second—order, but not in both simultaneously. The 
order of the constraint must be appropriate to the order of the run. A 
list of constraints available is given below. They are explained more 
fully on later pages. 
 
First—order constraints 
1) An element of the first—order transfer matrix R1. 
2) An element of the auxiliary first—order matrix R2. 
3) A σ (BEAM) matrix element. 
4) The correlations r in the beam coordinates. 
5) The first moments of the beam. 
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6) The total system length. 
7) An AGS machine constraint. 
8) The reference trajectory floor coordinates. 
 
Second-order constraints 
1) An element of the second—order transfer matrix T1. 
2) An element of the second-order auxiliary transfer matrix T2. 
3) The net contributions of aberrations to a given coordinate of the beam 
matrix σ. 
4) The strength of sextupoles used in the system. 
 The second—order matrices are actually computed using the auxiliary 
matrix T2. Therefore, when activating second—order fitting, one must not 
include any element which causes an update of the R2 matrix. For a complete list 
of such elements see type code 6.0. 
 The present value of the constrained quantity, as well as the desired 
value , is printed in the output. In the case of transfer matrix elements 
this value may be checked by printing the transfer matrix itself . Certain 
other constrained quantities may be checked similarly . Exceptions are 
noted in the explanations following. 
 
R1 matrix fitting constraints 
There are five parameters to be specified when imposing a constraint 
upon the (i, j) element of an R1 matrix. 

1. Type code 10. n (specifying that a fitting constraint follows). 
2. Code digit (-i). 
3. Code digit (j). 
4. Desired value of the (i, j) matrix element.  
5. Desired accuracy of fit (standard deviation). 

 
 Note that any fitting constraint on an R1 matrix element is from 
the preceding update of the R1 matrix. An R1 matrix is updated only 
by a (6. O. 1.  ;)entry. 
 The symbol (n) is normally zero or blank. If n = 1, then entry 4 is taken 
to be a lower limit on the matrix element. If n = 2, entry 4 is taken to be an 
upper limit. 
 
 
Some typical R1 matrix constraints are as follows: 
 
 

Desired optical condition Typical fitting constraint 
Point to point imaging: 
 Horizontal plane R(12) = 0 
 Vertical plane   R(34) = 0 

 
10. -1. 2. 0. .0001 ‘F1’; 
10. -3. 4. 0. .0001 ‘F2’; 

Parallel to point focus: 
 Horizontal plane R(11) = 0 
 Vertical plane   R(33) = 0 

 
10. -1. 1. 0. .0001 ‘F3’; 
10. -3. 3. 0. .0001 ‘F4’; 

Point to parallel transformation:  
 Horizontal plane R(22) = 0 
 Vertical plane   R(44) = 0 

 
10. -2. 2. 0. .0001 ‘F5’; 
10. -4. 4. 0. .0001 ‘F6’; 

Achromatic beam: 
 Horizontal plane 
 R(16) = R(26) = 0 

 
10. -1. 6. 0. .0001 ‘F7’; 
10. -2. 6. 0. .0001 ‘F8’; 

Zero dispersion beam: 
 Horizontal plane R(16) = 0 
 

 
10. -1. 6. 0. .0001 ‘F9’; 

 
Simultaneous point to point and 
waist to waist imaging: 
 Horizontal plane 

 
 
10. -1. 2. 0. .0001 ‘F10’; 
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 R(12) = R(21) = 0  
 
 Vertical plane 
 R(34) = R(43) = 0 

10. -2. 1. 0. .0001 ‘F11’; 
 
10. -3. 4. 0. .0001 ‘F12’; 
10. -4. 3. 0. .0001 ‘F13’; 
 

Simultaneous parallel to point and 
to waist transformation: 
 Horizontal plane 
 R(11) = R(22) = 0  
 
 Vertical plane 
 R(33) = R(44) = 0 

 
 
10. -1. 1. 0. .0001 ‘F14’; 
10. -2. 2. 0. .0001 ‘F15’; 
 
10. -3. 3. 0. .0001 ‘F16’; 
10. -4. 4. 0. .0001 ‘F17’; 

 
 
 
R2 matrix fitting constraints (pag.76) 
 There are five parameters to be specified when imposing a constraint upon 
the (I, j) element of an R2 matrix. 

1. Type code 10.n  
2. Code digit –(20 + i). 
3. Code digit (j). 
4. Desired value of the (I, j) matrix element. 
5. Desired accuracy of fit (standard deviation). 

 
Some typical R2 matrix constraints are as follows: 
 
The symbol (n) is normally zero or blank. If n = 1, then entry 4 is taken 
to be a lower limit on the matrix element. If n = 2, entry 4 is taken to be 
an upper limit. 
 
 
Desired optical condition Typical fitting constraint 
 
Point to point imaging: 
  Horizontal plane R (12) = 0 
  Vertical plane R (34)   = 0 
 
Parallel to point focus: 
  Horizontal plane R (11) = 0 
  Vertical plane R (33)   = 0 
 
Achromatic beam: 
  Horizontal plane 
  R(16) – R(26) = 0 
 

 
 
10. -21. 2. 0. .001 ‘F1’  ; 
10. -23. 4. 0. .001 ‘F2’  ; 
 
 
10. -21. 1. 0. .001 ‘F2’  ; 
10. -23. 3. 0. .001 ‘F2’  ; 
 
 
10. -21. 6. 0. .001 ‘F3’  ; 
10. -22. 6. 0. .001 ‘F4’  ; 

 
 
 
See type code 6.0 for a complete list of elements which update the 
R2 matrix. 
 
 
σ (BEAM) matrix fitting constraints 
  
 There are five parameters to be specified when imposing a constraint 
upon the (i, j) element of a σ(BEAM) matrix. 

1. Type code 10.n  
2. Code digit (i). (i ≥ j) 
3. Code digit (j). 
4. Desired value of the (i, j) matrix element. 
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5. Desired accuracy of fit (standard deviation). 
 

 The symbol (n) is normally zero or blank. If n = 1, then entry 4 is 
taken to be a lower limit on the matrix element. If n = 2, entry 4 is 
taken to be an upper limit. If i = j, then the value inserted in entry  4 is 
the desired bean size (σ (ii))

½ 
e.g. x(max) = (σ (11))

½
 etc. 

 
 Some typical σ matrix constraints are as follows: 
 

Desired optical condition Typical fitting constraint 
 
Horizontal waist σ (2l) = O  
Vertical waist σ  (43)  = O  
Fit beam size to x(max) = 1 cm 
Fit beam size to y(max) = 2 cm 
Limit max beam size to x = 2 cm 
Limit min beam size to y = 1 cm 

 
10. 2. l. O. .001 ‘F1’  ;  
10. 4. 3. O. .001 ‘F2’  ; 
10. 1. 1. 1. .001 ‘F3’  ; 
10. 3. 3. 2. .001 ‘F4’  ; 
10.2 1. 1. 2. .01 ‘F5’  ; 
10.1 3. 3. 1. .01 ‘F6’  ; 
 

 
In general, it will be found that achieving a satisfactory 'beam' fit 
with TRANSPORT is more difficult than achieving an R matrix fit. When 
difficulties are encountered, it is suggested that the user 'help' the 
program by employing sequential (step by step) fitting procedures when 
setting up the data for his problem. More often than not a "failure to 
fit" is caused by the user requesting the program to find a physically 
unrealizable solution. An often encountered example is a violation of 
Liouville-'s theorem. 
 
Beam correlation matrix (r) fitting constraints 
 
 Five parameters are needed for a constraint on the (i, j) element 
of the beam correlation matrix. 

1. Type code 10.n  
2. Code digit (10 + i) .  
3. Code digit (j ) . 
4. Desired value of the (i, j) matrix element.  
5. Desired accuracy of fit (standard deviation). 

 
 TRANSPORT does not print the beam (σ) matrix directly . Instead it prints 
the beam half widths and represents the off-diagonal elements by the correlation 
matrix. If one wishes to fit an element of this matrix to a non-zero value it is 
convenient to be able to constrain the matrix element directly. 
 
 Some typical matrix constraints are as follows: 

 
Desired optical condition 

 
Typical fitting constraint 
 

 
Horizontal waist r(2l) = 0 
yy' correlation = r(34) = 0.2  
 

 
10. 12. 1. O. .001 ‘F1’  ; 
10. 13. 4. 0.2 .001’F2’  ; 
 

 
First moment constraint 
 
 In first order, known misalignments and centroid shifts cause the 
centre (centroid) of the phase ellipsoid to be shifted from the reference 
trajectory, i . e. , they cause the beam to have a non—zero first moment. 
The first moments appear in a vertical array to the left of the vertical 

array giving the √  (  ). The units of the corresponding quantities are 
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the same . 
 It is perhaps helpful to emphasize that the origin always lies on 
the reference trajectory. First moments refer to this origin. However , 
the ellipsoid is defined with respect to its centre, so the covariance 
matrix, as printed, defines the second moment about the mean. 
 First moments may be fitted. The code digits are i = O and j , 
where j is the index of the quantity being fit. Thus 10. O. 1. .1 .01; 
constrains the horizontal (1. ) displacement of the ellipsoid to be 
0.1 ± 0.01 cm. 
 This constraint is useful in deriving the alignment tolerances of 
a system or in warning the system designer to offset the element in order 
to accommodate a centroid shift. 
 
 
System length constraint 
 A running total of the lengths of the various elements encountered 
is kept by the program and may be fit. The code digits are i. 0., 
j = O. 
Thus the element (10. 0. O. 150. 5. ;) would make the length of the 
system prior to this element equal to 150 ± 5 metres . Presumably there 
would be a variable drift length somewhere in the system. By redefining 
the cumulative length via the (16. 6. L. ;) element, partial system 
lengths may be accumulated and fit. 
 
 
 
AGS machine constraint*

)
  

 
 Provision has been made in the program for fitting the betatron phase 
shift angle μ, associated with the usual AGS treatment of magnet systems. 
  
 In the horizontal plane: use code digits i = -11., j = 2., and 
specify:  
 

Δ = 
 

  
 cos

-1
 [    (       )] = 

 

  
 (vert.) 

        = freq./(No. of periods). 
 
 In the vertical plane: i.= -13., j = 4., and 
 

Δ = 
 

  
 cos

-1
 [    (       )] = 

 

  
 (vert.) 

 
 
 For example, if there are 16 identical sectors to a proposed AGS 
machine and the betatron frequencies per revolution are to be 3.04 and 
2.14 for the horizontal and vertical planes respectively, then the last 
element of the sector should be followed by the constraints: 
 

10. -11. 2. .190 .001  ; 
10. -13. 4. .134 .001  ; 

 

i.e  
    

  
 = 0.190 and 

    

  
 = 0.134. 

 
 
For example: A typical data listing might be: 
     5.01 ---   ; 
     3.   ---   ; 
     5.01 ---   ; 
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     3.   ---   ; 
 
 
    10. -11. 2. 0.190 .001  ; 
    10. -13. 4. 0.134 .001  ; 
______________________________________________________________________ 
*) See Courant and Snyderl). Also note that this constraint is valid 
only when the unit cell structure and the corresponding beta functions are both periodic. 

________________________________________________________________________ 
 
Floor coordinate fitting constraint 
Five parameters are needed to specify a floor coordinate constraint: 

1. Type code 10.  
2. Code digit 8. 
3. Code digit (j ) . 
4. Desired value of floor coordinate. 
5. Desired accuracy of fit (standard deviation) . 

 
The code digit (j) indicates the floor coordinate to be constrained. Its possible 
values are 1 to 6 indicating the floor x, y, z, theta, phi, and psi, respectively. 
Theta is the angle which the floor projection of the reference trajectory makes 
with the floor z axis. Phi is the vertical pitch. Psi is a rotation about the 
reference trajectory. This is also the order in which coordinates are printed in 
the floor layout activated by the 13. 12. element. Initial coordinates are given 
on type codes 16. 16. ; through 16. 20. ; and type code 20. 
The floor coordinates are actually zero—-th rather than first order 
properties of a beam line. However, in TRANSPORT, they may be constrained 
in a first—order fitting run, and therefore are included here. 
 
T1 matrix fitting constraints   
 
Five parameters are needed for a constraint on the (i, j, k) element 
of the second—order transfer matrix T1. 

1. Type code 10.0  
2. Code digit (-i). 
3. Code digit (10j + k). 
4. Desired value of the (i, j , k) matrix element. 
5. Desired accuracy of the fit (standard deviation). 

 
 Note that upper and lower limit constraints are not available for 
second order fitting. 
 Some typical T1 matrix constraints are as follows: 
 

Desired optical condition Typical fitting constraint 
 

 
Geometric aberration T122= O  
Chromatic aberration T346 =.5 
 

 
10. -1. 22. .0 .001 'Fl'  ; 
10. -3. 46. .5 .001 ‘F2’  ; 
 

 
 There must be no updates of the R2 matrix when constraining an element 
of the T1 matrix. There is no limit on the number of constraints which 
may be imposed . 
 If no drift lengths are varied the problem will be linear and the 
absolute size of the tolerances will be unimportant. Only their relative 
magnitude will be significant. Sometimes only a subset of the elements 
of the matrix Tijk which give significant contributions to beam dimensions 
need be eliminated. In such cases one may wish to minimize the effect of 
this subset, by weighing each matrix element according to its importance. 
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One does this by including a constraint for each such matrix element, and 
setting its tolerance equal to the inverse of the phase space factor 
which the matrix element multiplies. For a matrix element Tijk acting on 
an uncorrelated initial phase space, the tolerance factor would be 
1/(x0jx0k), where xOj and xok are the initial beam half widths specified 
by the type code 1.0 card. 
 
T2 matrix fitting constraints 
 
 Five parameters are needed for a constraint on the (i, j, k) element 
of the second order auxiliary transfer matrix T2. 

1. Type code 10.0 
2. Code digit — (20 + i) . 
3. Code digit (10j + k) . 
4. Desired value of the (i , j , k) matrix element . 
5. Desired accuracy of the fit (standard deviation) 

 
 Note that upper and lower limit constraints are not available for 
second—order fitting. 
  
Some typical T2 matrix constraints are as follows: 
 

Desired optical condition Typical fitting constraint 
 

Geometric aberration T122 = O 
Chromatic aberration = .5  

10. -21. 22. .0 .001 ‘F1’  ; 
10. -23. 46. .5 .001 ‘F2’  ; 

 
 By using a T2 constraint the user may fit an element of the second 
order transfer matrix which pertains to any section of the beam. One 
causes an R2 update at the beginning of the section with a 6. O. 2.  ; 
element. One then places the T2 constraint at the end of the section. 
Any number of such constraints may be imposed . This is the only second 
order constraint that may be used in conjunction with an R2 update. 
 
 If a printing of the T1 matrix is requested via a 13. 4.  ; element it will 
be the second—order transfer matrix from the last R1 update . The 
comments about phase space weighting, made in connection with the T1 constraint, 
are equally valid for the T2 constraint, provided the phase space 
factors are obtained from the beam matrix at the position of the R2 update. 
 
 
Second—order U(BEAM) matrix fitting constraint 
 Five parameters must be specified for a constraint on the second 
order contributions to a beam matrix diagonal element σii. 
 

1. Type code 10.0  
2. Code digit (i) . 
3. Code digit (i) . 
4. The number 0. 
5. Desired accuracy of the fit (standard deviation) . 

 
 If , for example, one wished to minimize the net contributions of 
second—order aberrations to the horizontal divergence, one would insert 
the following card: 
 10. 2. 2. .0 .01 ; 
 
 The quantity that is minimized is the net increase due to second- 
order terms in the second moment of the beam about the origin. This 
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quantity is treated as the chi—squared of the problem, so the only meaningful 
desired value for the fit is zero. The square root of this quantity 
is printed in the output. It is computed using the R2 matrix. Therefore, 
once again, one must not include any element which updates the R2 matrix. 
Centroid shifts must not be inserted when doing second—order fitting, 
even immediately following the beam card. 
 
 The second—order image of the initial beam centroid at some later 
point in the beam is not necessarily the beam centroid at the later point. 
The parameters printed by TRANSPORT are the new centroid position and the 
beam matrix about the new centroid. One must therefore look at both of 
these to observe the effects of the fitting procedure. It may even 
happen that an improvement in one parameter will be accompanied by a 
slight deterioration in the other. 
 
 The beam profile at any point is a function of the initial beam 
parameters. One may therefore impose weights on the effect of the various 
aberrations by the choice of parameters on the BEAM card. One might, for 
example, adjust the strength of the correction of the chromatic aberrations 
by the choice of the Δp/p parameter. In particular, when using a BEAM 
constraint, one should not attempt to minimize or eliminate chromatic 
aberrations if Δp/p is set equal to zero on the beam card (type code 1.0). 
 
 Correlations (the 12.0 card) may also be included in the initial 
beam specification. 
 
 
 
Sextupole strength constraints 
 
 Five parameters must be specified for a constraint on sextupole 
strength. 

1. Type code 10.0  
2. Code digit 18. 
3. Code digit 0. 
4. The number 0. 
5. Desired maximum sextupole field strength. 

 
 A single sextupole constraint card applies to all sextupoles which 
follow. The maximum field strength is treated as a standard deviation 
and may be exceeded on an optimal fit. 
  
 One can employ this constraint to find the optimal locations for 
sextupoles. By placing inversely coupled drift lengths before and after the 
sextupole its longitudinal position may be varied. By constraining the 
field strength the sextupole can be slid to a position where the coupling 
coefficients to the aberrations will be largest. One will need to experiment with 
adjusting the maximum field strength to achieve the best configuration. 
 
 
Internal constraints 
 
 A set of upper and lower bounds on the value of each type of parameter 
is in the memory of the program. 
If a correction is computed for a parameter which would take its value outside 
this range, it is reset to the limit of the range. The current limits are: 
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Type code Limits 
 

 
 1.0 
 2.0 
 3.0 
 4.0 
 5.0 
20.0 

 
 0  < input; beam 
-60 < pole-face rotation < 60 (deg) 
 0  < drift 
 0  < magnet length 
 0  < quad length 
-360< beam rotation <360 (deg). 
 

 
These limits apply only when a parameter is being varied. Fixed 
values that exceed this range may be used as desired. 
 
These constraints were included to avoid physically meaningless 
solutions. 
 
Corrections and covariance matrix 
 When the program is fitting, it makes a series of runs through the 
beam line. From each run it calculates the chi-squared and the corrections to be 
made to the varied parameters. For each iteration a single line is printed 
containing these quantities. 
 
 The program calculates the corrections to be made using a matrix 
inversion procedure . However, because some problems are difficult , it 
proceeds with caution. The corrections actually made are sometimes a 
fixed fraction of those calculated. This fraction, used as a scaling 
factor, is the first item appearing on the line of printed output . The 
second factor is the chi-squared before the calculated corrections are 
made . Following are the corrections to be made to the varied parameters . 
They are in the order in which they appear in the beam line . If several 
parameters are coupled, they are considered as one and their position is 
determined by the first to appear. 
 
 When convergence has occurred, the final value of the chi-squared 
and the covariance matrix are printed. The covariance matrix is symmetric , 
so only a triangular matrix is shown. The diagonal elements give the 
change in each varied parameter needed to produce a unit increase in the 
chi-squared. The off-diagonal elements give the correlations between 
the varied parameters. 
 
 The appearance of the chi-squared and covariance matrix is: 
 
   *COVARIANCE (FIT X

2
) 

   √    

   r12  √    
   .  . 
   .   . 
   .    . 

   r1n  . . . rn,n-1 √       
 
For more details on the mathematics of the fitting, the user should 
consult the Appendix. For an example of the output of the program he 
(or she) should refer to the section on output format. 
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ACCELERATION: Type code 11.0 
  
 An energy gain is reflected in both the divergence and the width of 
the beam. This element provides a simulation of a travelling wave linear 
accelerator energy gain over a field free drift; length (i.e. no externally 
applied magnetic field). 
  
 There are five parameters: 

1. Type code 11.0  
2. Accelerator length (metres). 
3. Energy gain (GeV).  
4. ϕ (phase lag in degrees). 
5. λ (wavelength in cm). 

 
 The new beam energy is printed as output. 
 
 The energy of the reference trajectory is assumed to increase linearly over 
the entire accelerator length. If this is not the case, an appropriate model may 
be constructed by combining separate 11.0 elements. An 11.0 element with a zero 
energy gain is identical to a drift length. 
 
 None of the parameters may be varied. 
 
 Second-order matrix elements have not been incorporated in the 
program for the accelerator section. 
 
 The units of parameters 2, 3, and 5 are changed by 15. 8., 15. 11., 
and 15. 5. type code entries respectively. 
 
 
Accelerator section matrix 
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didascalia 
 
Definitions: L = effective length of accelerator sector 
  E0 = particle energy at start of sector 
  ΔE = energy gain over sector length 
  ϕ  = phase lag of the reference particle behind  the crest of the 
  accelerating wave, i.e. if ϕ is positive then for some l?>0 the  
  particles having this value are riding the crest of the wave; the 
  units of ϕ are degrees 
  λ = wavelength of accelerating wave; the units of λ are those of l?, 
  (normally cm). 
 
This matrix element assumes that E0 >> m0c

2
(fully relativistic) . 

 
 
BEAM (rotated ellipse): Type code 12.0 
 
To allow the output beam from some point in a system to become the 
input beam of some succeeding system, provision has been made for reentering the 
correlation matrix which appears as a triangular matrix in the beam output. (See 
section under type code 1,0 and/or the Appendix for definitions.) 
 
There are 16 parameters: 
 
 1 — Type code 12.0 
   2 to 16 - The 15 correlations (r(ij)) among the 6 beam components - 
  in the order printed (by rows). 
 
 Several cards may be used to insert the 15 correlations, if necessary. 
 
 Since this element is solely an extension of the beam input, a 12.0 
element; must immediately be preceded by a 1.0 (BEAM) element entry. 
 
 The effect of this element in the printed output is shown only in 
the beam matrix. If the beam matrix is printed automatically, it is not 
printed directly after the BEAM element but only after the correlation 
matrix has been inserted. 
 
 
 
Output PRINT CONTROL instructions: Type code 13.0 
 
 A number of control codes which transmit output print instructions 
to the program have been consolidated into a single type code: 
  
 There are two parameters: 
1 — Type code 13.0 
2 - Code number. 
 
The effects of the various code numbers will be described below (not in 
numerical order). 
 
 Several codes are available to control various aspects of the printed 
output. Most type codes produce a line of output that advertises their 
existence. Those that do not, usually have an obvious effect upon the 
remainder of the output and thus make their presence clear. 
 
Beam matrix print controls 1., 2., 3. 
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 (13. 1. ;): The current beam (σ) matrix is printed by this code. 
 
 (13. 3. ;): The beam (σ) matrix will be printed after every physical 
element which follows this code. 
 
 (13. 2. ;): The effect of a previous (13. 3.  ;) code is cancelled 
and the beam (σ) matrix is printed only when a (13. 1. ;) code is encountered or 
when another (13. 3. code is inserted. The suppression of the beam matrix is the 
normal default. 
 
Transformation matrix print controls 4., 5., 6., 24.  
 
 (13. 4. ;): The current transformation matrix R1 (TRANSFORM 1) is 
printed by this code. If the program is computing a second—order matrix, 
this second—order transformation matrix will be included in the print—out. 
This matrix is cumulative from the last R1 (TRANSFORM 1) update . The 
units of the elements of the printed matrix are consistent with the input 
units associated with the type code 1.0 (BEAM) entry. 
 
 (l3. 6. ;): The transformation matrix R1 will be printed after 
every physical element which follows this code. The second—order matrix 
will be printed automatically only if the one—line form (code 13. 19. ;) 
of the transformation is selected. The second-order matrix will, however, 
be printed at each location of a (13. 4. ;) element. The first-order 
matrix will not be repeated. 
 (13. 5. ;): The automatic printing of R1 will be suppressed and R1 
will be printed only when subsequently requested. 
 
 (13 . 24. ;): The TRANSFORM 2 matrix, R2, will be printed by this 
code. The format and units of R2 are identical with those of R1, which 
is printed by the (13. 4. ;). code. For a list of elements which update 
the R2 matrix, see type code 6. 
 
 The units of the tabulated matrix elements in either the first—order 
R or sigma matrix or second—order T matrix of a TRANSPORT print—out will 
correspond to the units chosen for the BEAM card. For example, the 
R(l2) = (x/θ) matrix element will normally have the dimensions of cm/mr; 
and the T(236) = (θ/yδ) matrix element will have the dimensions mr/(cm percent  
Δp/p) and so forth. 
 
Misalignment table print control 8. 
 
 The misalignment summary table is printed wherever a (13. 8. ;) 
element is inserted. Its contents are the effects of all previously 
specified misalignments whose results were to be stored in a table . A 
full description of the table and its contents is to be found in the 
section on the align element (type code 8.) . 
 
Coordinate layout control 12. 
 
 One can produce a layout of a beam line in any Cartesian coordinate 
system one chooses. The coordinates printed represent the x, y, and z position, 
and the angles theta, phi, and psi, respectively, of the reference trajectory at 
the interface between two elements. Theta is the angle which the floor projection 
of the reference trajectory makes with the floor 2 axis. Phi is the vertical 
pitch. Psi is a rotation about the reference trajectory. In the printed output the 
values given are those at the exit of the element listed above and at the entrance 
of the element listed immediately below. 
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 A request for a layout is specified by placing a (13. 12. ;) card 
before the beam card. If no additional cards are inserted the reference 
trajectory of the beam line will be assumed to start at the origin and proceed 
along the positive z—axis. The y—axis will point up and the x-axis to the left. 
One can also specify other starting coordinates and orientations by placing 
certain other cards before the beam card. For a description of such cards see type 
code 16.0 (special parameters). 
 The calculation of the coordinates is done from the parameters of the 
physical elements as given in the data. Therefore, if effective lengths are given 
for magnetic elements, the coordinates printed will be those at the effective 
field boundary. The effects of fringing fields in bending magnets are not taken  
into account. 
 
General output format controls 17., 18., 19. 
 
 (13. 17. ;): The subsequent printing of the physical parameters of all 
physical elements will be suppressed. Only the type code and the label will 
remain. This element is useful in conjunction with the (13. 19. ;) element which 
restricts the beam (σ) matrix and the transformation (R) matrix each to a single 
row. The elements of these matrices then appear in uninterrupted columns in the 
output, similar to the TRAMP computer code used at the Rutherford Lab, CERN, and 
elsewhere. 
 
 (13. 18. ;): Only varied elements and constraints will be printed. This 
element, in conjunction with the various options on the indicator card, can 
produce a very abbreviated output. The entire output of a multistep problem can 
now easily be printed on a teletype or other terminal. 
 
 (13. 19. ;): The beam (σ) and transformation (R1 or R2) matrices, when 
printed, will occupy a single line. Only those elements are printed which will be 
non—zero if horizontal midplane symmetry is maintained. The second—order 
transformation matrix will obviously occupy several lines. This element, in 
conjunction with the l3. l7. ; element and either the 13. 3. ; element or the 13. 
6. ; element, will produce output in which the printed matrix elements will occupy 
single uninterrupted columns. 
For visual appearances it is recommended that, if both beam (σ) and 
transformation matrices are desired, they be printed in separate steps of a given 
problem. 
 
Punched output controls 29., 30., 31., 32., 33., 34., 35.,36. 
 
 If the control is equal to 29, all of the terms in the first—order 
matrix and the x and y terms of the second-order matrix are punched. 
 
 If the control is equal to 30, all of the terms of the first—order 
matrix and all second—order matrix elements are punched out. 
 
 If the control, n, is greater than 30, all of the first—order terms 
are punched and the second-order matrix elements which correspond to 
(n-30.), i.e. if n = 32, the second—order theta matrix elements are 
punched out. If n = 31, the second—order x matrix elements are punched, 
and so forth. 
 
ARBITRARY TRANSFORMATION input: Type code 14.0 
 
 To allow for the use of empirically determined fringing fields and other 
specific (perhaps non-phase—space—conserving) transformations, provision has been 
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made for reading in an arbitrary transformation matrix. The first—order 6 X 6 
matrix is read in row by row. 
 
 There are eight parameters for each row of a first-order matrix 
entry: 
 1 — Type code 14.0 
2 to 7 —  The six numbers comprising the row. The units must be those 
  used to print the transfer matrix; in other words, consistent 
  with the BEAM input/output. 
 8 - Row number (1. to 6.) 
 
 A complete matrix must be read and applied one row at a time. Rows 
that do not differ from the unit transformation need not be read. 
 
 For example, (14. -.1.9 0. O. 0. O. 2. ;) introduces a transformation 
matrix whose second row is given but which is otherwise a unit matrix. 
Note that this transformation does not conserve phase space because 
R(22) = 0.9, i.e. the determinant of R ≠ 1. 
 Any of the components of a row may be varied; however, there are 
several restrictions. 
 
 Type code 14.0 elements that immediately follow one another will all 
be used to form a single transformation matrix. If distinct matrices are 
desired, another element must be inserted to separate the type code 14.0 
cards. Several do—nothing elements are available; for example, a zero 
length drift (3. 0. ;) is a convenient one. 
 When the last of a sequence of type code 14.0 cards is read, the 
assembled transformation matrix will be printed in the output. 
Note that 

(
  

      
) (

      

  
) ≠ (

      

      
) 

 
Hence, a matrix formed by successive 14. (3. 0. ;), 14. – elements is not always 
equal to the one formed by leaving out the (3. O. ;) element. 
 
 If components of a 14.0 card are to be varied it must be the last 
14.0 card in its matrix. This will force a matrix to be split into 
factors if more than one row has variable components. 
 
 If it is desired to read in the second-order matrix coefficients for 
the 1

th
 row, then the followlng 22 additional numbers may be read in**

)
 . 

-------------------------------------------------------------------------------- 
** This feature frees the user from making repetitive, expensive, second-order runs through a fixed 
portion of his system while experimenting with other magnets. This is done by reading the full matrix 
of this portion (obtained from a previous run) back into the machine as a single "arbitrary matrix." 
--------------------------------------------------------------------------------
  
 9 – continuation code 0. 
10 to 30 – the 21 coefficients: 
 

T(i11) T(i12) T(i13) T(i14) T(i15) T(i16) 
T(i22) T(i23) T(i24) T(i25) T(i26) T(i33) 
T(i34) T(i35) T(i36) T(i44) T8i45) T(i46) 
T(i55) T(i56) T(i66)    

 
  in that order, where i is the row number. It is necessary to read in 
  the first-order matrix row which corresponds to the second—order 
  matrix row  being read in. 
 
 As in the first—order case, full rows not different from the 
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identity matrix [i.e., R(ii) = 1, all other R(ij) = 0, and all T(ijk) = 0] need 
not be read in. 
 
Input-output UNITS: Type code 15.0 
 
 TRANSPORT is designed with a standard set of units that have been 
used throughout this manual. However, to accommodate other units conveniently, 
provision has been made for redefining the units to be employed. 
This is accomplished by insertion of one or more of the following elements . 
 
 There are four parameters to be specified: 

1. Type code 15.0  
2. Code digit. 
3. The abbreviation of the unit (see examples below) .  

This will be printed on the output listing. It must be enclosed in single 
quotes and is a maximum of three characters long (four for energy). The 
format for insertion is the same as for labels. 

4. The scale factor (if needed).  
The scale factor is the size of the new unit relative to the standard 
TRANSPORT unit . For example , if the new unit is inches and the standard 
TRANSPORT unit cm, the scale factor is (2.54).  

 
 
The various units that may be changed are: 
 
Code 
Digit 

Quantity 
Standard 

TRANSPORT Unit 
Symbols used in 

SLAC-75 
1.0 
 
 
 
 
2.0 
 
 
 
3.0 
 
 
 
4.0 
 
5.0 
 
 
6.0 
 
7.0 
 
 
8.0 
 
 
 
 
9.0 
 
10.0 
 

horizontal and vertical  
transverse dimensions, 
magnet apertures and misalignment 
displacements. 
 
horizontal and vertical  
angles and misalignment 
rotation angles 
 
vertical beam extent cm y 
(only)*

)
 and bending 

magnet gap height 
 
vertical beam divergence*

)
 (only) 

 
pulsed beam length and  
wave length in accelerator 
 
momentum spread 
 
bend, pole face rotation, and  
coordinate layout angles 
 
length (longitudinal)  
of elements, layout coordinates 
and bending 
magnet pole face curvatures 
 
magnetic fields 
 
mass 
 

cm  
 
 
 
 

mr 
 
 
 

cm 
 
 
 

mr 
 

cm 
 
 

percent (PC) 
 

degrees (DEG) 
 
 

metres (M) 
 
 
 
 

kG 
 

electron mass 
 

x,y 
 
 
 
 

θ , ϕ 
 
 
 
y 
 
 
 
ϕ 
 
ℓ  
 
 
δ 
 
 
 
t 
 
 
 
 
 
Β 
 
m 
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11.0 momentum and  
energy gain in accelerator section 
 

GeV/c 
GeV 

p(O) 
ΔΕ  

 
*) These codes should not be used if the coordinate rotation (20.0) type code is used anywhere in the 
system. 

 
 Units are not normally restored at the end of a problem step . Once 
changed, they remain the same for all succeeding problem steps in an input deck 
until a 0 indicator card is encountered, at which time they are re 
set to standard TRANSPORT units. The units may be reset to standard units 
by inserting a (15. ;) type code entry. 
 
 The 15.0 elements are the first cards in a deck (immediately following the 
title card and the O or l indicator card) and should not be inserted in any other 
location. They produce no printed output during the calculation, their effect 
being visible only in the output from other elements . 
 
 Exemple: To change length to feet , width to inches , and momentum 
to MeV/c, add to the front of the deck the elements 
 

15. 8. ‘ FT’ 0.3048; 
15. 1. ‘ IN’ 2.54; 
15. 11. ‘ MEV’ 0.001; 

 
 
The scale factor, 0.3048, multiplies a length expressed in the new unit, 
feet, to convert it to the reference unit, metres, etc. 
 
 For the conventional units listed below, it is sufficient to stop with the 
unit name (the conversion factor is automatically inserted by the program) . If 
units other than those listed below are desired, then the unit name and the 
appropriate conversion factor must be included . 
If the automatic feature is used with older versions of the program, there 
must be no blank spaces between the quotes and the unit name. 
 
Input-output units: Type code 15.0 
(Conversion fact0rs for dimension changes versus code digit and label) 
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SPECIAL INPUT PARAMETERS: Type code 16.0 
 
 A number of constants are used by the program which do not appear as 
parameters in elements of any other type code. A special element has been provided 
to allow the designer to set their values. These special parameter entries must 
always precede the physical e1ement(s) to which they apply. Once introduced, they 
apply to all succeeding elements in the beam line unless reset to zero or to new 
values. 
 
 There are three parameters: 
 
 1 — Type code 16.0 
 2 — Code digit. 
 3 — Value of the constant. 
 
A number of such constants have been defined in this manner. 
All have a normal value that is initialized at the beginning of each run. 
 
 
Code digits for special parameters  
 

1. 
 

ϵ(1) a second—order measure of magnetic field 
inhomogeneity in bending magnets . If 
 

B(x) = B(0) [   (
 

  
)    (

 

  
)
 

  ]  

is the field expansion in the median (y = 0) plane, 
then ϵ(1) is defined as 

ϵ(1) = β (
 

  
)
 

 

(where ρ0 is measured in units of horizontal beam 
width — 
normally cm). This parameter affects second—order 
calculations only. Normally the value if 0. It may 
be varied in second—order fitting. 
 

3. 
 

(M/m) Mass of the particles comprising the beam, in units 
of the electron mass; normally 0. A non-zero mass 
introduces the dependence of pulse length on 
velocity, an important effect in low-energy pulsed 
beams. 
 

4. 
 

W/2 Horizontal half-aperture of bending magnet, in the 
same units as horizontal beam width, normally 0 
(i.e. effect of horizontal half aperture is 
ignored). 
 

5. g/2 Vertical half—aperture of bending magnet, in the 
same units as vertical beam height; this parameter 
must be inserted if the effect of the spatial extent 
of the fringing fields upon transverse focusing is 
to be taken into account. (See type codes 2.0 and 
4.0 as a cross reference) normally 0. 
 

6. L Cumulative length of system, in the same units as 
system length. It is set to zero initially, then 
increased by the length of each element, and finally 
printed at the end of the system. 
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This element allows the cumulative length to be 
reset as desired. 

7. K1 An integral related to the extent of the fringing 
field of a bending magnet. See section under type 
code 2.0 and SLAC-75 page 74  for further 
explanation. 
If the (16. 5. g/2. ;) element has been inserted, 

the program inserts a default value of K1 = 
 

 
 unless 

a (16, 7, K1. ;) element is introduced, in which 
case the program uses the K1 value selected by the 
user. The table below shows typical values for 
various types of magnet designs. 
 

8. K2 A second integral related to the extent of the 
fringing field. Default value of K2 = 0 unless 
specified by a (16. 8. K2 . ;) entry. 
 

 
  
Typical values of K1 and K2 are given below for four types 
of fringing field boundaries: 

a) a linear drop-off of the field, 
b) a clamped "Rogowski" fringing field, 
c) an unclamped "Rogowski" fringing field, 
d) a "square-edged" non-saturating magnet 

 
Model K1 

 
K2 *

) 

 
Linear 
 
Clamped Rogowski 
 
Unclamped Rogowski 
 
Square—edged magnet 

 
1/6 
 
0.4 
 
0.7 
 
0.45 

 
3.8 
 
4.4 
 
4.4 
 
2.8 
 

 
12. 1/R1 —Where R1 is the radius of curvature (in units of longitudinal 
  length, normally metres) of the entrance face of bending magnets. 
  (See figure on p. 
13,  1/R2  -Where R2 is the radius of curvature (in units of longitudinal 
  length, normally metres) of the exit face of bending magnets. 
  (See figure on p. 
 
 The pole face curvatures (1/R1) and (1/R2) affect the system only in second-
order, creating an effective sextupole component in the neighbourhood 
of the magnet. If the parameters are not specified, they are assumed to be 
zero, i .e. no curvature and hence no sextupole component. Either parameter 
(or both) may be varied in second-order fitting. 
-------------------------------------------------------------------------------- 
*)For most applications K2 is unimportant. If you find it is important to your result you should 
probably be making a more accurate calculation with a ray—tracing program (see References at the end 
of the manual.) 

-------------------------------------------------------------------------------- 
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FIELD BOUNDARIES FOR BENDING MAGNETS 
The TRANSPORT sign conventions for x,  β, R and h are all positive as shown in the 
figure. The positive y direction is out of the paper. Positive β's imply 
transverse focusing. Positive R's (convex curvatures) represent negative sextupole 
components of strength s = (- h/2R) sec

3
 β. (See SLAC—75, page 71.) 
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Tilt-to-focal plane (16.  15.  α. ;) element (pag.106) 
 
 Very often it is desired to have a listing of the second—order 
aberrations along the focal plane of a system rather than perpendicular 
to the optic axis, i.e. along the x coordinate. If the focal plane makes 
an angle α with respect to the x axis (measured clockwise) then 
provision has been made to rotate to this focal plane and print out 
the second-order aberrations. This is achieved by the following procedures: 
 
 Alpha is the focal-plane tilt angle (in degrees) measured from the 
perpendicular to the optic axis (α is normally zero) . 
 
 The programming procedure for a tilt: in the x(bend)-plane (rotation 
about y axis) is: 
 16. 15. α. ; 
  3.  O. ; (a necessary do—nothing element) 
 13.  4. ; 
 16. 15. -α.  ; (rotate back to zero) 
  3.  O. ; (a necessary do—nothing element) 
 16. 15. O. ; (to turn off rotation element) 
 
 The programming procedure for a tilt in the y—plane (rotation about x-axis) 
is: 
 16. 15. α. ; 
 20. 90.  ; 
  3.  O.  ; 
 20. -90. ; 
 13.  4.  ; 
 16. 15. –α. ; (rotate back to zero) 
  3.  O. ; 
 16. 15. O. ; (to turn off rotation element) 
 
 
Initial beam line coordinates and direction 
 
 When requesting a beam line coordinate layout via a (13. 12. ;) 
element one can employ any coordinate system one desires. The position and 
direction of the beginning of the reference trajectory in this 
coordinate system are given on elements 16. 16. through 16. 20. Such 
cards should be placed before the beam card, but after any units changes. 
Their meanings are as follows: 
 
l6.  16. x0 , y0, and z0, respectively, the coordinates of 

16.  17.  the initial point of the reference trajectory 

16.  18. in the units chosen for longitudinal length. 

16.  l9. Θ0 and ϕ0 the initial horizontal and vertical angles 

16.  20.  of the reference trajectory in degrees. 

 

 When specifying the initial orientation of the reference trajectory 
via the two angles, one must give the horizontal angle first. The 
meaning of the two angles is given in the following figure. Any of the 
above five parameters not explicitly specified will be taken to equal zero. 
 The initial coordinates may be varied in first—order fitting. Their 
values will affect only the beam line floor coordinates and not any beam 
or transfer matrix element. 
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REFERENCE TRAJECTORY 

 
SPECIFICATION OF INITIAL ANGLES θ0 AND ϕ0 FOR BEAM LINE LAYOUT. 
 
SECOND-ORDER CALCULATION: Type Code 17.0 
 
 A second—order calculation may be obtained provided no alignments are 
employed. A special element instructs the program to calculate the second- 
order matrix elements . It must be inserted immediately following the beam 
(1. element). 
 
 Only one parameter should be specified: 
 
 1 - Type coder 17.0 (signifying a second—order calculation is to be 
 made). 
 
 To print out the second order T1 matrix terms at a given location in 
the system, the (13. 4.  ;) print control card is used. For T2, the 
(13. 24. ;) print control card is used. The update rules are the same 
as those for the corresponding first-order R matrix. See SLAC—75 for 
definitions of subscripts in the second order T(ijk) matrix elements. 
 
 The values of the BEAM (sigma) matrix components may be perturbed 
from their first-order value by the second—order aberrations. In a 
second-order TRANSPORT calculation, the initial beam is assumed to have 
a Gaussian distribution. For exact details the reader should consult 
the Appendix. For the beam matrix to be calculated correctly, there 
should be no elements which update the R2 matrix. If a centroid shift is 
present , it must immediately follow the beam (type code 1 .0) or beam 
rotated ellipse (type code 12.0) card. 
 
 Only second-order fitting may be done in a second-order run. See 
the section on type code 10 .0 for a list of quantities that may be constrained  
in a second—order run. If a beam constraint is to be imposed in 
second—order, there must be no centroid shifts present anywhere. 
 
 Second—order matrices are included in the program for quadrupoles , 
bending magnets (including fringing fields) , the arbitrary matrix, sextupoles, 
and solenoids. They have not been calculated for the acceleration (type code 11.0) 
element. 
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SEXTUPOLE: Type code 18.0 
 
 Sextupole (hexapole) magnets are used to modify second-order aberrations in 
beam transport systems . The action of a sextupole on beam particles is a second 
and higher order effect, so in first order runs (absence of the 17.0 card) this 
element will act as a drift space. 
 
 There are four parameters: 
 
 1 — Type code 18.0  
 2 - Effective length (metres). 
 3 — Field at pole tips (kG). Both positive and negative 
 fields are possible (see figures below). 
 4 — Half-aperture (cm). Radius of circle tangent to pole tips. 
 
 Other orientations of the sextupole may be obtained using the beam 
rotation element: (type code 20.0). 
 
 The pole tip field may be varied in second—order fitting. It may 
also be constrained not to exceed a certain specified maximum field. 
(See the explanation of vary codes in the section on type code 10.0). 
Such a constraint allows one to take into account the physical realities 
of limitations on pole tip fields. 
 See SLAC—75 for a tabulation of sextupole matrix elements. The 
TRANSPORT input format for a typical data set is: 
 
      Label if desired (not to exceed  
         4 spaces) 
  18.   L.  b.  a.  ‘ ‘  ;  
 



- 76 - 
 

 



- 77 - 
 

DIPOLE QUADRUPOLE SEXTUPOLE 
 
ILLUSTRATION OF THE MAGNETIC MIDPLANE (X AXIS) FOR DIPOLE, QUADRUPOLE AND 
SEXTUPOLE ELEMENTS. THE MAGNET POLARITIES INDICATE MULTIPOLE ELEMENTS THAT ARE 
POSITIVE WITH RESPECT TO EACH OTHER, 
 
 
SOLENOID: Type code 19.0 
 
 The solenoid is most often used as a focusing element in systems 
passing low-energy particles. Particles in a solenoidal field travel 
along helical trajectories. The solenoid fringing field effects necessary to 
produce the focusing are included. 
 
 There are three parameters: 
 
 1 — Type code 19.0 
 2 - Effective length of the solenoid (metres) . 
 3 — The field (kG). A positive field, by convention, points in the 
 direction of positive z for positively charged particles. 
 
 The length and the field may be varied in first—order fitting. Both 
first— and second-order matrix calculations are available for the solenoid. 
 
 A typical input format is: 
 
      Label if desired (not to exceed  
         4 spaces) 
  19.   L.  B.  ‘ ‘  ;  
 
 
 
First-order solenoid matrix 
 
Solenoid R matrix 
 
Definitions: L = effective length of solenoid 
  K = B(O)/(2Bρ0),where B(O) is the field inside the solenoid and (Bρ0) 
  is the (momentum) of the central trajectory. 
  C = cos KL 
  S = sin KL 
 
 For a derivation of this transformation see report SLAC-4 by R. Helm. 
 
 
Alternate forms of matrix representation of the solenoid: 
 

    C
2
   

 

 
SC  SC  

  

 
 
2
   0  0  

   -KSC  C
2
   -KS

2
   SC   0  0  

   -SC  -
  

 
 
2
   C

2 
  

  

 
     0  0  

R(Solenoid) = 
   KS

2
   -SC   -KSC  C

2
  0  0  

    0   0   0  0   1   0  

    0  0   0  0   0   1  
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Rotating the transverse coordinates about the z axis by an angle 
= -KL decouples the x and y first-order terms, i.e. 
 
 

    C   
 

 
S  0  0  0   0 

   -KS  C  0   0   0  0  

   0  0   C
 
  

  

 
    0  0  

R(-KL)R(Solenoid)  
 

   0  0   -KS  C  0  0  

    0   0   0  0   1   0  

    0  0   0  0   0   1  

 
 
 
COORDINATE ROTATION: Type code 20.0 
 
 The transverse coordinates x and y may be rotated through an angle α: about 
the z axis (the axis tangent to the central trajectory at the point 
in question)** ). Thus a rotated bending magnet, quadrupole, or sextupole may be 
inserted into a beam transport system by preceding and following the element with 
the appropriate coordinate rotation. (See examples below.) The positive sense of 
rotation is clockwise about the positive z axis. 
 
 There are two parameters to be specified for a coordinate rotation: 
 
 1 - Type 20.0 (signifying a beam coordinate rotation). 
 2 — The angle of rotation α (degrees). 
 
 The angle of rotation may be varied in a first-order fitting (see 
type code 10.0). 
 
Note 
 This transformation assumes that the units of (x and y) and (θ and ϕ) 
are the same. This is always true unless a 15.0 3.0 or a 15.0 4.0 type 
code has been used. 
------------------------------------------------------------------------- 
**) See SLAC-'754), page 45 and Fig. 4, page 12 for definitions of x, y, 
and z coordinates. 

------------------------------------------------------------------------- 
 
Examples 
 
 For a bending magnet, the beam rotation matrix may be used to 
specify a rotated magnet. 
 
Examples No. 1 
 
 A bend up is represented by rotating the x, y coordinates by -90.0 
degrees as follows: 
 
     Labels (not to exceed 4 spaces) if desired 
  
  20.  -90.  ‘  ‘  ; 

  2.   β(1). ‘  ‘  ; 

  4.   L.  B.  n. ‘  ‘  ; 
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  2.   β(2). ‘  ‘  ; 

  20.  +90.  ‘  ‘  ; (return coordinates to their initial orientation) 

 
A bend down is accomplished via at +90 degree rotation. 
 
  20.  +90.  ‘  ‘  ; 

  2. 

  4. 

  2. 

  20.  -90.  ‘  ‘  ; 

 
A bend to the left (looking in the direction of beam travel) is 
accomplished by rotating the x, y coordinates by 180 degrees, e.g. 
 
  20.  180.  ‘  ‘  ; 

  2. 

  4. 

  2. 

  20. -180.  ‘  ‘  ; 

 
Example No. 2 
 
 A quadrupole rotated clockwise by 60 degrees about the positive z 
axis would be specified as follows: 
 
 20. 60. ' ' ; 

 5. L. B. a. ' ' ; 

 20. -60. ' ' ; 

 
Beam rotation matrix 

 
 
    C   S     

     C   S     

   -S    C
 
     

  R= 
     -S    C    

        1    

         1  

 
 
where  C = cos α,  
 S = sin α, 
 α = angle of coordinate rotation about the beam axis, 
 blank spaces are zeros. 
e.g. for α = +90 degrees, this matrix interchanges rows 1 and 2 with 3 and 4 of 
the accumulated R matrix as follows: 
 

[

    
    
     
     

]  [

 (  )  (  )  (  )  (  )

 (  )  (  )  (  )  (  )
 (  )  (  )  (  )  (  )

 (  )  (  )  (  )  (  )

]  [

 (  )  (  )  (  )  (  )

 (  )  (  )  (  )  (  )
  (  )   (  )   (  )   (  )

  (  )   (  )   (  )   (  )

] 

 
 (The rest of the matrix is unchanged.) 
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STRAY MAGNETIC FIELD: Type code 21.0 
 
 1 - Element No. 21.0 
 2 - Code No. n.  n = 4: horizontal deflection 
    n = 2: vertical deflection. 
 
 3 — <BL>  mean value of ∫   . 
 
 4 — ± <σ BL>  +: Gaussian random number generator; 
    affects beam first moment.  
    -: uncertainty in ∫    affects beam 
    second moment. 
 
Uses the misalignment element (8.) to calculate an angular deflection 

equal to ∫
   

(  )
 

 This type code is not functioning in the present version of the 
program. 
 
 
SENTINEL 
 
 Each step of every problem in a TRAWSPORT data set must be terminated 
with the word SENTINEL. The word SENTINEL need not be on a separate card. 
For a description of the form of a TRANSPORT data set see the section on 
input format . 
 An entire run, consisting of one or several problems, is indicated 
by an additional card containing the word SENTINEL. Thus, at the end of 
the entire data set the word SENTINEL will appear twice. 
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APPENDIX 
Introduction 
 
 This appendix has been included as an addition to the manual in an 
attempt to better acquaint the user with ‘what TRANSPORT does‘, and with the 
notation and mathematical formalism used in a TRANSPORT calculation. 
 
 The first section (Beam Transport Optics - Part I and Part II) is a 
rewrite of two lectures given to members of the SLAC technical staff on the 
elementary matrix algebra of optics. We include them here for the benefit of 
the new user who may need a brief refresher course on charged particle optics 
and/or has a need to become familiar with TRANSPORT notation. The new user 
should also acquaint himself with the contents of the books and other publications 
listed under 'references' at the end of the manual. References l and 2 are 
essential if the user is to obtain the maximum value from TRANSPORT. 
 
 The second section of this appendix was written to introduce the 
mathematical formalism of the first-order R matrix and Sigma matrix (phase 
ellipsoid) beam optics used in a TRANSPORT calculation and to correlate this with 
the printed output. 
  
 Section three discusses second—order calculations and, in particular, a 
procedure for calculating the "Sextupole" strengths required to minimize and/or 
eliminate second—order aberrations in a beam transport system. 
 
 Section four is a brief derivation of the mathematical formalism used by 
TRANSPORT for calculating magnet alignment tolerances. 
 
 Section five deals with the first-order parameter optimization code of 
TRANSPORT and includes a brief explanation of the covariance matrix that is 
printed after each first-order fit routine. 
 

BEAM TRANSPORT OPTICS 
Section I 

 
Beam Transport Optics - Part I 
(K. L. Brown) 
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1 . Introduction 
 
 A convenient starting point for this lecture is the equation relating 
the magnetic rigidity of a particle (Bρ) to the particle momentum P. 
 

Bρ= 
   

       
 P  or Bρ= 33.356 P 

where 
  B  is in kilogauss 

  ρ  is the bending radius in meters 

  P  is the particle 's momentum in BeV/c. 

 
 A note of caution: When using this equation for a TRANSPORT calculation, it 
is necessary to use at least 5 significant figures for the constant to 
avoid round-off errors in the readout. 
 
 
2. Geometric Light Optics vs.-Magnetic Optics 
 
 To relate geometrical light optics to charged particle optics, we 
begin with the thin lens. Figure l shows a thin lens with a ray leaving 
a focal point A at an angle    , impinging on the lens at xo . As the ray leaves 
the lens, it is at x1 and going toward a focal point B at an 
angle of     
 

 
 
Figure l 
Thin lens optics says that 1/p + 1/q = 1/f. Using this equation it is 
readily verified that the matrix transformation for the lens action between 
principal planes is 
 

[
  

  
] = [

  
     

] [
  

  
] (nella parentesi centrale  

   manca croce divisoria) 
 
The transformation for a drift distance L is 
  

 
 

   [
  

  
] = [

  
  

] [
  

  
] 
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 Note that the determinant of the matrix in both examples is equal to 
unity. This is always the case as will be proved formally later. That this 
is so is a manifestation of Liouville's theorem of conservation of phase 
spa ce area 
 
Consider now a thick lens, as illustrated in Figure 3. 
 
 
 

 
 
 

Figure 3 
If L1 is the object distance to the face of the lens and L2 is the 
corresponding image distance, then, in general, 
 

1/L1 + 1/L2 ≠ 1/f. 
 
If, however, we introduce two planes P1 and P2 located at a distance 
z1 and z2 from the entrance and exit faces of the lens, it is always 
possible to find a z1 and a z2 such that the equation 
 

1/p = 1/1q = 1/f is valid. 
Where 
 

P = L1 + z1  
q = L2 + z2  

 
When this is so, P1 and P2 are called the principal planes of the lens. 
 
 Now, relating the above statement to matrix formalism, the matrix 
transformation for a thick lens between the input and output faces of the 
lens has the general form: 
 
 

[
  

  
] = [

      

      
] [

  

  
]          (1) 

 
 
where as before the det R = l . For a general transformation, R12 is not 
necessarily equal to O and R11 and R22 are not necessarily equal to l . 
 The principal planes may be located by the transformation 
 
 

[
      

      
] = [

   
  

] [
  

     
] [

   
  

] (2) 

 
 
Using the relation 
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[
  
  

] [
   
  

]   [
  
  

]  = 1 (the unit matrix) 

 
the previous equation may be manipulated into the form 
 

                         [
         

            (         )
            

]      [
   
  

] [
      

      
] [

    
  

]    [
  

     
]  (3) 

 
(Manca ripartizione nella prima parte) 
 
Solving for zl and z2 , we find 
 

Z1 = 
      

   
 

 

Z2 = 
      

   
 

 
where z1 and z2 are the location of the principal planes as shown in 
Fig. 3. The principal planes of any system may be determined by this method. 
 
 Note that R21 = -1/f is not affected by the transformation and that the 
upper right hand matrix element is zero if det R = 1 . The principal 
planes may coincide, may be close together, be far apart; or in many systems, 
may be located external to all of the elements comprising the system. An 
example of the latter case is a quadrupole pair. 
 
 Some examples of principal plane locations for simple systems follow: 
 
A quadrupole singlet: 
 
 
 
    P1        P2 
 
    Figure 4 
 
  
 The principal planes in a single quadrupole are located very close 
to each other and very near the center of the lens. As such, a quadrupole 
singlet may be considered as a thin lens if the object and image distances 
are measured to the center of the lens. 
A simple uniform-field wedge magnet: 
 

 
 



- 87 - 
 

 If the optic axis enters and exits perpendicularly to the pole boundary, 
the principal planes are at the "center" of the magnet, as shown in Figure 5. 
From this, we conclude that a simple wedge bending magnet may be considered 
as a 'thin" lens if the object and image distances are measured to the lens 
center 0. 
 
 
A quadrupole pair 
 

 
 

 
 
 
 
 For a quadrupole pair, the principal planes are displaced toward and, 
usually, beyond the focusing element of the pair, as shown in Figures 6 and 7. 
 
 For any lens system, no matter how many elements are involved 
 
 
 
 
 
 
 
 
object 

 
       p     P1  P2     q      
    
    Figure 8       image 
 
1/p+ 1/q = 1/f, if p and q are distances measured to the principal 
planes. Then the magnification between object and image planes is M = q/p. 
 
 Since the quadrupole pair is different in the two planes, (x) and (y), 
both situations must be examined. The interesting result turns out to be 
that in the x plane, the principal planes are to the right (Figure 6) and 
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in the y plane, they are to the left (Figure 7). Therefore, in the y plane 
the magnification is greater than 1, and in the x plane the magnification 
is less than 1.. Typically, for a quadrupole pair the ratio of 
 

My/Mx 
 
may be as high as 20:1 and such cases can be disastrous if not recognized 
beforehand. This is a first-order image distortion. For example, if the 
source is a circular spot at A , the image at B will appear as a long 
thin line. 
The situation is different for the 
Quadrugole triplet: 
    
     zx      zx 
 
 
 
 
A                                                                 B Mx ≅  1 
 
 
 
   P1     P2 
 
 
x plane   Figure 9 
    
  
     Zy      zy 
 
 
 
 
A                                                                 B Mx ≅ 1 
 
 
    
   P1     P2  
 
Y plane    Figure 10 
 
 
 In the symmetric triplet, as shown in Figures 9 and 10, the principal 
planes are located symmetrically about the center of the system, although 
zx > zy . This is, perhaps, the dominant reason why quadrupole triplets are used. 
The magnification is approximately equal in both planes; consequently, a circular 
spot can be imaged through the system with much less 
first-order image distortion than is the case for the doublet. 
 
 
3. Introduction of Momentum Dispersion into the Matrix Formalism 
 
 The foregoing discussion and examples dealt only with monoenergetic 
first-order effects. First-order dispersion may be taken into account by 
introducing a 3 X 3 matrix as follows: 
Consider two particles of momentum po and po + Δp passing through 
the midplane of a static magnetic field, as illustrated in Figure ll. 
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    Figure ll  
 
Since the scalar momentum of a particle is constant in a static magnetic 
field, the transport equation from A to B may be expressed as: 
 
 

[

  
  

 
] = [

       

        

   

] [

  

  

 
]  manca quadrettatura nella parte centrale 

         A 
Where 
 δ = Δp/p0 
 d = the spatial momentum dispersion 
 d’= the derivative of the dispersion (the angular momentum dispersion) 
and  
 1 = a carrying tern to generate a square matrix and denote a constant 
 momentum. 
 
 The determinant of the matrix  R  is equal to l as for the 2 x 2 matrix. 
However, because of the zeros in the bottom row, the fact that  R = (R11 R22 –R12 
R21 ) = 1 only checks the 2 x 2 matrix and not the terms containing d and d'. 
 
 Consider now a general system from an object point A to an image point 
B.   

  
 The above matrix equation is still valid for midplane trajectories. 
If A is a source point and if R12 = 0 (i.e., x is independent of θ0), then B is an 
image point for monoenergetic particles. 
Under these circumstances: 
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 R11 = Mx is the x plane magnification 
  
 R22 = +1/Mx because det R = l 
And 
  R21 = - 1/1fx 
 
 In fact, R21 = - 1/fX for the system between A and B , even if 
A and B are not foci. 
 It is now convenient to develop a more general definition of the matrix 
elements Rij and, at the same time, introduce the first-order matrix 
transformation for the y(non-bend) plane. Consider, again, a general system 
where the projection of the central trajectory is allowed to bend in the 
x plane but is a straight line in the y plane. The x plane and y plane matrix 
transformations may be written as follows: 
 
For the x plane x1 = Rx x0  
 

  or    [

  
  

 
] = [

  
( )

  
( )

  
( )

   
( )

   
( )

  
 

( )

   

] [
  

  

 
]  (manca quadrettatura nella parte centrale) 

 
 
Similarly, for the Y plane Y1 = Ry y0  

Or     [
  
 

 
] = [

  
( )

  
( )

   
( )

   
( )

] [
  

 
 
]   (manca quadrettatura nella parte centrale) 

 
 
 The c and s functions may be defined in terms of their initial conditions. 
Let τ be the distance measured along the 
 
 
        

 
 
central trajectory. Then: 

 s(0) = 0  s’(0)  = 1  where s’(τ) = 
  ( )

  
 

 

 c(0) = 1 c’(0) = 0  c’(τ) = 
  ( )

  
 =-

 

 
 

     
 
 Within an "ideal" magnet, where the bending radius ρ0  is constant, s and 
c are sine and cosine or else sinh and cosh functions. Because of 
this, the terminology s = a sine-like function and c = a cosine-like 
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function has been adopted for describing the general case where ρ0 = ρ0(τ) is a 
function of τ. 
 
 By analogy with previous discussions, we observe that whenever s(τ) = O, 
we are at an image of point A. Also, at the position where s(τ) = O 
is the magnification of point A at that image. 
 
 c'(t) = - l/f where f is the focal length of the system between A 
and B. The dispersion dx may be derived from the general differential equations of 
motion of a charged particle in a static magnetic field.(l) 
----------------------------------------------------- 
 (1) See SIAC-75 for a derivation of these equations. 
----------------------------------------------------- 

 
The results may always be expressed as a function of sx and cx as follows: 
 

  dx(t) = sx(t) ∫   
 

 
(τ)dα  - cx(t)∫   

 

 
 (τ)dα  

and 

 

  d’x(t) = s’x(t) ∫   
 

 
(τ)dα  - c’x(t)∫   

 

 
 (τ)dα 

 
where 
 

     dα  = 
  

  ( )
 

 
is the differential angle of bend of the central trajectory. At an image point 
[s(t) = o] note that 

  dx(t) = - c(t)∫   
 

 
(τ)dα 

      
This approach to the problem may be generalized to include all of the 
second-order aberrations of a system. When this is done, it is always 
 
possible to express these aberrations as functions of the first-order 
matrix elements cx , sx ,dx ,cy           and sy . 
  
 Having developed the above physical concepts and mathematical tools, 
we are now in a position to study more complicated systems. As an example, 
we consider the general system shown in Figure 14 
 
 L1  L2   L3   L4 
A                                                  B 
 
  
   Figure 14 
 
 L  = drift elements 
 
 
  = magnetic elements 
 
The matrix formalism states that in the x plane, the transformation 
from A to B is given by the following matrix equation. 
 

M1 M2 Q1 
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   [

  

  

 
] = RL4  Rz RL3 Rq1 RL2 R1 RL1 [

  

  

 
] 

(parte centrale scritta in modo impreciso) 
 
 As in all matrix calculations, the order of writing down the elements 
comprising the system is from right to left. The individual matrix elements 
must be derived from the solution of the equation of motion within each element. 
If this has been done, then the calculation for the total system is carried 
out in the fashion shown by the above equation. 
 
4. Second-Order Matrix Formalism (1) (pag.139) 
 
 It is possible to extend the 3 x 3 matrix formalism to solve simultaneous 
sets of power series by generating a second-order matrix equation as follows: 
 

 
 

 
 The "R1

2
" term is obtained by squaring the upper left corner (3 X 3) 

matrix so as to obtain second-order equations for x1
2
 , x1θ1, x1 δ, etc., 

as functions of products of the initial first-order variables x0, θ0, and δ. 
 This is, then, a convenient mathematical formalism for keeping all the 
terms desired and dropping those undesired. In the above example, all first- 
and second-order terms are retained and all higher-order terms are automatically 
dropped by the matrix multiplication. 
 
 
5. Transformations Involving Many Trajectories 
 
 All of the discussion to this point relates to the transformation of 
a single trajectory (in addition to the central trajectory) through a static 
magnetic system. We wish now to extend the discussion to include "bundles" 
of rays. To accomplish this, we take advantage of Liouville's Theorem, which 
states that the "phase space" is conserved through the system. While the 
Theorem is strictly true to all orders, a convenient mathematical transformation 
has only been developed to first-order. A manifestation of Liouville's Theorem is 
the fact that  R = 1 . 
 Now, so long as there is no coupling mechanism between the x plane and y 
plane of a magnetic-optical system (which is the case if the midplane symmetry 
prevails throughout the system) then, the phase space area in a given plane is 
also conserved. Consider a bundle of rays represented by the parallelogram, shown 
in Figure l5(a), representing the phase space distribution of the rays at some 
initial position. If we now look at the phase space distribution of the same 
bundle after it has drifted down stream, we observe the θmax  boundary and the x 
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intercept x1 remain unchanged. In other words, the area of the parallelogram is 
the same, or "phase space area has been conserved." 
 

 
 
For mathematical convenience, the parallelogram is rather difficult 
to work with and, hence, a phase ellipse is usually used. 
 

 
 
 
 The phase ellipse transformation for a drift distance is illustrated 
in Figure 16. Figure l6(a) corresponds to a beam which is at its minimum 
width (a "waist") and Figure 16(b) shows the same beam after it has drifted 
downstream from the waist position. The physical meaning of this is that 
particles entering at 9 = O are parallel to the optic axis and, therefore, 
cannot change their relative positions with respect to the optic axis; that 
is, all particles on the x0 axis act in this manner. Those that enter 
at a given angle continue at the same angle. 
  
 The phase ellipse transformation for a thin lens is illustrated in 
Figure 17. In passing through a thin lens, θ changes and the x dimension 
remains constant for a given trajectory. 
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 Stated in other terms, xmax remains constant, as does θi  (the θ intercept). 
It is apparent, in the given example, that the spot size now becomes, or can 
become, smaller at the new image because θmax is larger.  
This can be related to the physics of the system by saying that the x 
magnification is less than unity. This fact is observed directly by comparison 
of the x intercept of the ellipse before and after the lens action. It is 
interesting to observe that a particle initially at c is transformed to 
c' and that particles entering at x = 0 do not change their direction 
(θi  is constant). If the particles are now allowed to drift, the ellipse rotates 
clockwise; when the ellipse if vertical, the spot size is at a 
minimum, namely, xmax = x1 , as was illustrated in Figure 16. 
 
 
Beam Transport Optics - Part II (K. L. Brown) 
 

1. Introduction 
 
 In Part I, the basic concepts of been transport optics were established. 
Starting from the essentials of geometric optics, the methods of matrix 
algebra were introduced with the example of calculating the principal planes 
of a thick lens. The 3 x 3 matrix for the first- order bean transport 
calculations were introduced to take into account the particle moments. 
 

2. First Order Transformation Matrix  
 
 Figure 1 shows a general region containing a magnetic field. 

 
 
Figure 1: General Magnetic Field Configuration 
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 The matrix presents a convenient way of writing the family of equations 
which describe the transformation from surface A to surface B. If x0, θ0  and δ 
represent the conditions of a ray entering the system at A, then the conditions of 
the ray at B are X1, θ1  and δ . Here x0 is the distance from the central ray to 
the ray C, θ0  is the angle between C and the parallel to the central ray and δ is 
the ratio Δp/p where Δp is the difference between the momentum of C and the 
momentum of the central ray. 
 
The linear transformation equations are: 
  x1 = cxx0 + sxθ0 + dxδ  
 
  θ1 = cx’x0 + sx’θ0 + dx’δ      (1) 
 
  δ = 0 + 0 + δ  
  
Expressed as a matrix, Eq. (1) are: 
 
 
 

  [

  

  

 

] = [

      

        
 

   

] [

  

  

 

]      (2) 

 
 
 The equation δ  = δ  expresses the fact that the magnetic field cannot 
change the scalar momentum of the particle. The δ terms in the x and θ  
equations express the momentum dispersion of the system. 
 If it happens that A is an object point and B is an image point of 
the system, then xl is independent of θ0 , thus sX = O. In this case, cX 
is given by cx = x1 /x0 = Mx = the magnification in x plane, (for δ  = 0). if θ0 = δ  
= 0, then θ1 = c’x x0 = -x0/f or c’x = -1/f. It must always be true that the 
determinant of the matrix |R |, is unity. Thus for this 
special case of sX = 0, it follows that s’x= l/Mx. 
 
3. Beam Switchyard 
 
 As an example of a system which can be calculated with the matrix 
method, we next consider the beam switchyard of the two-mile accelerator. 
Figure 2 shows the three essential elements, two bending magnets and a 
quadrupole lens. In common with many beam transport systems, this one is 
designed to be achromatic. Mathematically, this means that the matrix 
elements, dx and d’x should be zero, so that there is no x or θ dependence 
on the momentum of the particles. 
 

 
Figure 2: The Essentials of the Beam Switchyard 
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As a preliminary step, we will find the matrix expression for a bending 
magnet when measured from the principal planes. The matrix for a bending 
magnet, when measured from the ends of the poles, is given by: 
 

    Rbend =   [
     
    
   

]    (3) 

        (manca quadrettatura 
where c = cos α  and s = sin α  and α  is the deflection angle of the central 
ray. This expression has been normalized by setting the bending radius 
equal to unity. To restore ordinary units it is only necessary to insert 
the bending radius wherever a length is needed dimensionally. In this 
case, the matrix then becomes 
 

    Rbend =   [
    (   )

      
   

]    (4) 

        (manca quadrettatura) 
 
If the distance from the entrance plane to the first principal plane 
is z1 and the distance from the second principal plane to the exit plane 
is z2, we can find the values zl and z2 by solving the following matrix 
equation: 
 

 [
     
   
   

] [
     
    
   

] [
     
   
   

] [
    

        
   

]   (5) 

 
 
The matrix multiplication need only be done for the 2 X 2 matrices 
as outlined. To illustrate matrix multiplication the indicated operations 
will be given below in natural stages as follows: 
 

[
    
  

] [
          
           ] [

    
     

] 

        (manca quadrettatura) 
 
 

   [

              

             
           

]   [
  

     
]    (6) 

        (manca quadrettatura) 
 
Note that these transformations do not change the focal length expression, 
-1/f = -s. In order for two matrices to be equal, each individual element 
must be equal to its counterpart in the other matrix. Thus we have 
 

      c + z2s = 1  
 

      c + z1s = 1     (7) 
 

 
which when solved for z1 and z2 yeld 
 

z2 = (1-c)/s and z1 = (1-c)/s 
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If we substitute the trigonometric equivalents, and apply standard identities, 
we have z2 = z1 = tan (α/2) which can be seen from Figure 3 to indicate that 
the two principal planes are coincident with the symmetry plane in the middle 
of the magnet. 
 

 
 
 Figure 3: The Principal Planes of a Simple Bending Magnet are 
   Coincident with the Center Plane 
 
The simplified matrix for a bending magnet measured to the principal planes is 
then: 
 

  Rbend =   [
   
    
   

]                                (8) 

        (manca quadrettatura) 
 To calculate the transformation matrix for the entire Beam Switchyard 
system as shown in Fig. 2, we write the matrices in opposite order from that 
in which the beam passes through the elements. That this must be true can 
be seen from the way in which one element alone is calculated by 
 
 

    [

  
  

 
] =R1 [

  

  

 
]                           (9) 

 
Then for a second element we have 
 

    [

  

   

 
] = R2 [

  
  

 
] =R2R1[

  

  

 
]                (10) 

and so forth. 
 If we allow the system to be symmetrical, i.e. s1 = s2 and L1 = L2; the 
complete series of matrices for Fig. 2 are 
 

RBSY = [
   
    
   

] [
   
   
   

] [
   

      
   

]  [
   
   
   

] [
   
    
   

]   (11) 

         (manca quadrettatura) 
We will show the step—by—step multiplication of the matrices to get 
The dx and d’x terms. 
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RBSY = [
   
       
   

] [
   

      
   

]  [
       
    
   

] 

         (manca quadrettatura) 
 

RBSY = 

[
 
 
 
 
 ( 

 

 
)  ( 

 

 
)   ( 

 

 
)

(    [   
 

 
(    )]) (  

 

 
)  (    ) ( 

 

 
)

   ( 
 

 
)

   ]
 
 
 
 
 

         (12) 

         (manca quadrettatura) 
To obtain the required condition that dx = d’x = 0, we set 
 

                                                    (  
 

 
) = 0 or f = 

 

 
 

Then 
 

   RBSY = [

    

 
 

 
(    )    

   

]    (13) 

         (manca quadrettatura) 
 Thus the quadrupole acts as a lens to refocus rays from the center of 
the first bending magnet to the center of the last one. For the serious 
student, it is a worthwhile exercise to do the BSY problem without the 
simplification which resulted from introducing the principal planes. 
 
 
4. TRANSPORT (pag.150) 
 
 As an aid to solving beam transport problems, a computer program 
TRANSPORT has been developed at SLAC which takes the greatest amount of 
labor out of this work. The program operates in about the way as the BSY example 
above was calculated, but with some important exceptions. Most 
importantly: 
 1. TRANSPORT has the ability to find the best first-order solution 
given a certain set of constraints; 
 2. TRANSPORT also calculates the transformation of a whole family 
of rays as found in a beam by means of the concept of "phase space" which 
was introduced in Part I; 
 3. TRANSPORT can, as an option, calculate the second order effects 
on the beam. By second order is meant, for example, terms which depend net 
linearly on the displacement xo , but on   

  or x0 θ0 , etc. 
 
 To aid in the discussion of TRANSPORT and of the second order terms 
we now introduce an abbreviated notation. By writing out the complete equations 
for x and y , to second order, we will adequately have displayed the new 
notation. 
 
 X1 = (x|x0)x0 + (x |θ0)θ0 +(x|δ )δ  

  +(x|  
 )   

  + (x |x0 θ0)x0 θ0  +(x|x0 δ)x0 δ 

  +(x|  
 )   

  + (x |θ0 δ)θ0 δ  +(x|δ
2
)δ

2
 

  +(x|  
 )   

  + (x |y0 ϕ0)y0 ϕ0  +(x|  
 )   

      (14) 
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 Y1 =  (y|y0) + (y |ϕ0 )ϕ0   

  +(y|x0y0) x0y0 + (y|x0 ϕ0 ) x0 ϕ0 + (y|θ0y0) θ0y0    (15) 

  +(y|θ0 ϕ0)θ0 ϕ0 + (y|y0 δ)y0 δ + (y|δϕ0) δϕ0 

 

The absence of certain terms which might otherwise be expected in 
Eqs. (14) and (15) is due to the fact that horizontal mid-plane symmetry 
has been assumed in the derivation. That is, the field on the horizontal 
mid-plane is normal to the plane. Thus there can be no (y|x) or (y|θ) term. 
Similarly, there can only be even powers of y and ϕ , such as and in the (x|  

 ) 
and (x|y0ϕ0) in the x equation. Also, note that there is no (y|δ) or (y|δ

2
) term if 

there is mid-plane symmetry. 
 
 TRANSPORT uses a numerical notation to signify the six basic coordinates: 
   x  θ  y  ϕ   ℓ   δ   
   1  2  3  4   5   6       (16) 
 
 The ℓ term has not been introduced here before. Its significance is the 
preservation of the bunch length of a beam such as the SLAC electron beam. 
 The first order output from TRANSPORT is a 6 x 6 matrix printout of the 
R matrix where the labels are implied by row and column position of the elements. 
For example the element appearing at the intersection of row 3 and column 4 
Is the coefficient (y|ϕ0) etc. 

 x0 θ0 y0 ϕ0 ℓ0  δ0  
x - - - - - - 
θ  - - - - - - 
y - - - - - - 
ϕ  - - - - - - 
ℓ   - -  - - - 
δ  - - - - - - 

 
The second order terms are labeled by the convention indicated in Eqs. (14), (15) 
and (16). For example, becomes (x|  

 ) and becomes 1 11 and (x|θ0δ) becomes 1 26. 
 
 
5. Second Order Matrix 
 
 Normally the matrix method is expected only to apply to the solution 
of linear, i.e. first order, equations . However, the method has been extended to 
include second order terms as discussed in Part I. 
 
 For a more extensive discussion of the second—order matrix 
formalism, the reader is referred to SLAC report number 75 by K.L. Brown. 
 
 
 

FIRST -ORDER R MATRIX FORMALISM FOR TRANSPORT 
Section II 

 
 Beam transport optics may be reduced to a process of matrix multiplication 
( 1,2) . To first-order, this is represented by the matrix equation (using the 
notation of SLAc-75) . 
 
    x1(t) = ∑    

 
       (0)     (1) 

where  
x1 = x  x2 = θ  x3 = y  x4 = ϕ  x5 = ℓ   and x6 = δ 

 
The determinant |R| = 1. This is a direct consequence of the basic equation of 
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motion for a charged particle in a static magnetic field and is a manifestation of 
Liouville's theorem of conservation of phase space volume. (See SLAC—75, page 41 
for a proof that |R| = 1.) 
 
 For static magnetic systems possessing midplane symmetry, the six 
simultaneous linear equations represented by Eq. (1) may be expanded in matrix 
form as follows: 
  
 
 

[
 
 
 
 
 
 ( )

 ( )

 ( )

 ( )

 ( )
 ( ) ]

 
 
 
 
 

 = 

[
 
 
 
 
 
            

            

          
          

            

      ]
 
 
 
 
 

 

[
 
 
 
 
 
  

  

  

  

  

   ]
 
 
 
 
 

 

 
           (2) 
 
      (mancano righe verticali parte centrale) 
 
 
where the transformation is from an initial position τ = 0 to a final position 
τ = t measured along the assumed central reference trajectory. 
 
 Thus at any specified position in a system, an arbitrary charged particle 
is represented by a vector (single column matrix), X, whose components are the 
positions, angles, and momentum of the particle with respect to a specified 
reference trajectory. 

i.e. x= 

[
 
 
 
 
 
 
 
 
 
 
  ]
 
 
 
 
 

 

 
where: 
 x =  the radial displacement of the arbitrary ray with respect to the 
  assumed central trajectory. 
 θ =  the angle this ray makes in the radial plane with respect to the 
  assumed central trajectory. 
 y =  the transverse displacement of the ray with respect to the assumed 
  central trajectory. 
 ϕ =  the transverse angle of the ray with respect to the assumed central 
  trajectory. 
 ℓ  =  the path length difference between the arbitrary ray and the central 
  trajectory. 
 δ =  ΔP/P is the fractional momentum deviation of the ray from the assumed 
  central trajectory 
 
 The magnetic lens is represented by the square matrix, R, which describes 
the action of the magnet on the particle coordinates. Thus the passage of a 
charged particle through the system may be represented by the matrix equation: 
 
     X(1) = R X (0)    (3) 
 
where X(O) is the initial coordinate vector and X(l) is the final coordinate 
vector of the particle under consideration; R is the transformation matrix for all 
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such particles traversing the system (one particle differing from another only by 
its initial coordinate vector X(O)) . 
 The traversing of several magnets and interspersing drift spaces is 
described by the same basic equation but with R now being the product matrix R = 
R(n) . . . R(3)R(2)R(l) of the individual matrices of the system elements. 
TRANSPORT calculates and tabulates the product matrix R representing the system. 
 
 The zero elements R13 = R14 = R23 = R24 = R31 = R32 = R41 = R42 = R36 = R46 = 0 
in the R matrix are a direct consequence of midplane symmetry. If midplane 
symmetry is destroyed, these elements will in general become non-zero. The zero 
elements in column five occur because the variables x, θ, y, ϕ, and δ are 
independent of the path length difference ℓ. The zero's in row six result from the 
fact that we have restricted the problem to static magnetic fields, i.e., the 
scalar momentum is a constant of the motion. 
 
 In SLAC report 75 (Ref. 1), a physical significance has been attached to 
the non-zero matrix elements in the first four rows in terms of their 
identification with characteristic first-order trajectories. We include figures 
showing these characteristic functions as a convenient reference. 
 
 We now wish to relate the elements appearing in column six and those in 
row five in terms of simple integrals of the characteristic first-order matrix 
elements cx(t) = R11 and sx(t) = R12. In order to do this, we make use of the 
Green's function integral, Eq. (43), Section II of SLAC-75, and of the expression 
for the differential path length in curvilinear coordinates 
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   dT = [(dx)

2 
+ (dy)

2
 + (1+hx)

2
 (dt)

2
 ]

½
   (4) 

used in the derivation of the equation of motion. 
 
 
First-Order Dispersion (pag.163) 
 
 The spatial dispersion dx(t) = R16 of a system at position t is derived 

using the Green's function integral, and the driving term f(τ) = h (τ) = 
 

  ( )
 for  

the dispersion (see Table I of SLAC-75). The result is 
 

 dx(t) = R16 = sx(t) ∫   
 

 
(τ) h (τ)dτ – cx(t) ∫    

 

 
(τ)h(τ)dτ    (5) 

 
where τ  is the variable of integration. Note that h(τ)dτ = dα  is the 
differential angle of bend of the central trajectory at any point in the system. 
Thus first-order dispersion is generated only in regions where the central 
trajectory is deflected (i.e., in dipole elements.) The angular dispersion is 
obtained by direct differentiation of dx(t) with respect to t, the curvilinear 
distance along the central trajectory. 
 

   
 (t) = R26 =   x(t) ∫   

 

 
(τ) h (τ)dτ – c’x(t) ∫    

 

 
(τ)h(τ)dτ   (6) 

 
where 
 

 c’x(t) = R21 = s’x(t) =R22 
 
 
First-Order Path Length 
 
 The first-order path length difference is obtained by expanding and 
integrating Eq. (4) and retaining only the first-order term, i.e., 
 

ℓ – ℓ0 = (T-t) = ∫  ( ) ( )   
 

 
 higher order terms    (6) 

from which 
 

ℓ = x0 ∫   
 

 
( )  ( )    0 ∫   

 

 
 (τ) h(τ) dτ +ℓ0 +δ  ∫   

 

 
(τ) h(τ)dτ   

= R51 x0 + R52θ0 + ℓ0 + R56 δ        (7) 
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Inspection of Eqs. (5), (6), and (7) yields the following useful theorems: 
 
 Achromaticity: A system is defined as being achromatic if R16 = R26= 0, i.e., 
if dx(t) = d’x(t) = 0. Therefore it follows from (5) and (6) that the 
necessary and sufficient conditions for achromaticity are that 
 

∫   
 

 
(τ) h(τ)dτ  = ∫   

 

 
(τ) h(τ)dτ = 0      (8)  

 
By comparing Eq. (7) with Eq. (8), we note that if a system is achromatic, all 
particles of the same momentum will have equal (first-order) path lengths through 
the system. 
 
 Isochronicity: It is somewhat unfortunate that this word has been used 
in the literature to mean equal path lengths since equal path lengths only imply 
equal transit times for highly relativistic particles. Nevertheless, from Eq. 7, 
the necessary and sufficient conditions that the first-order path length of all 
particles (in dependent of their initial momenta) will be the same through a 
system are R51 = R52 = R56 = 0, i,e., if 
 

∫   
 

 
(τ) h(τ)dτ  = ∫   

 

 
(τ) h(τ)dτ = ∫   

 

 
(τ) h(τ)dτ = 0   (9) 

 
 
First -Order Imaging (pag.164) 
 First-order point-to-point imaging in the x plane occurs when x(t) is 
independent of the initial angle θ0 . This can only be so when 
 

    sx(t) = R12 =0.     (10) 
 
Similarly first-order point-to-point imaging occurs in the y plane when 

    sy(t) = R34 =0.     (11) 

 
First-order parallel-to-point imaging occurs in the x(t) plane when is independent 
of the initial particle position xo. This will occur only if 

    cx(t) = R11 =0.     (12) 
 
and correspondingly in the y plane, parallel-to-pointimaging occurs when 

    cy(t) = R33 =0.     (13) 
 
A parallel ray entering a system exits parallel to the central trajectory if 
 

    c’x(t) = R21 =0.     (14) 
in the x plane; and if 
 

    c’y(t) = R43 =0.     (15) 
in the y plane. 
Point-to—parallel imaging occurs in the x plane if 
 

    s’x(t) = R22 =0.     (16) 
and in the y plane if 
 

    s’y(t) = R44 =0.     (17) 
 
Focal Lengths 
 A simple ray diagram of a "thick" lens demonstrates that R21 and R43 have 
the following physical interpretations 
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c’x(t) = R21 = -
 

  
  and c’y(t) = R43 = -

 

  
    (18) 

 
where fx and fy are the system focal lengths in the x and y planes respectively. 
 
Zero Dispersion 
 
 For point-to-point imaging, using Eq’s.(5) and (10), the necessary and 
sufficient condition for zero dispersion at an image is 
 

   dx(t) = R16 = ∫   
 

 
(τ) h(τ)dτ = 0   (19) 

 
For parallel-to-point imaging, (i.e., cx(t)= O),the condition for zero dispersion 
at the image is 

   dx(t) = R16 = ∫   
 

 
(τ) h(τ)dτ = 0   (20) 

 
Magnification 
  
 For monoenergetic point-to-point imaging in the x-plane, the magnification 
is given by 
 

   Mx = 
 ( )

  
 = R11 = cx(t) 

 
And the y plane by 
 

   My = R33 = cy(t)      (21) 
 
where a negative number means an inverted image. 
 
 
First-Order Momentum Resolution 
  
 For point-to-point imaging the first-order momentum resolving power Rl 
(not to be confused with the matrix R) is the ratio of the momentum dispersion to 
the total image size. Thus if 2xO is the total source size then 
 

   R1 = 
 

  
 = |

   

      
| = |

  ( )

       ( )
| 

 
 
For point-to—point. imaging sx(t) = 0. Using Eq. (5), the dispersion at an image 
is 

   dx(t)= -cx(t)  ∫   
 

 
(τ) h(τ)dτ     (22) 

 
from which the first-order momentum resolving power Rl becomes 
 

   2x0R1 = |
  ( )

  ( )
| = |∫   ( )  ( )  

 

 
| = |   |  (23) 

 
Equation (23) for the first-order resolving power of a system may be 
expressed in a number of useful forms. If we consider a ray (particle) originating 

at the source with X0 = O and δ = 
  

 
 = O and lying in the midplane. (i.e., a mono-  

energetic point source), the first-order equation representing the midplane 
displacement, x of this trajectory is 
    

   x(t) = sx(t) θ0       (24) 
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We may then rewrite Equation (23) as follows: 
 

 x0R1   ∫   
 

 
( )  ( )     

 

  
∫  
 

 
( )  ( )     

(    )

  
  |   |  (25) 

 
or we may. also write it in the form 
 

R1 =
 

     
 ∫  

 ( )  

   

 

 
 = (

 

     
) (

 

   
)∫    

 

 
     (26) 

 
where ∫     is the magnetic flux inclosed between the central trajectory and the 
ray represented by Eq. (24), and Bρ  is the magnetic rigidity (momentum) of the 
central trajectory. Please note, however, that if the ray crosses the central 
trajectory or the sign of B changes, this changes the sign of the integration. 
 
 Some important observations may be made from Eq's. (25) and (26). 
 l) Resolving particles of different momentum requires that a path 
length difference must exist between the central trajectory and the trajectory 
defined by Eq. (22). The greater the path length difference, the greater the 
resolving power. 
 2) From Eq. (24), we may define resolving power as the magnetic flux 
inclosed per unit phase space area per unit momentum (Bρ) of the central ray. 
 
 
First-Order σ  Matrix (Phase Ellipse) Formalism for TRANSPORT  
 
 In accelerators and beam transport systems, the behavior of an individual 
particle is often of less concern than is the behavior of a bundle of particles 
(the BEAM) of which an individual particle is a member. An extension of the matrix 
algebra of Eq. (3) provides a convenient means for defining and manipulating this 
BEAM. TRANSPORT assumes that the bundle of rays constituting a BEAM may correctly 
be represented in coordinate phase-space by an ellipsoid whose coordinates are the 
position, angle, and momentum coordinates of the arbitrary rays in the beam about 
an assumed central trajectory. TRANSPORT is a matrix calculation that truncates 
the problem to either first- or second-order in a Taylors expansion about the 
central trajectory. Particles in a BEAM are assumed to lie within the boundaries 
of the ellipsoid with each point within the ellipsoid representing a possible ray. 
The sum total of all phase points, the phase space volume, is commonly referred 
to as the "phase space" occupied by the BEAM. The validity and interpretation of 
this phase ellipse formalism must be ascertained for each system being designed. 
However, in general, for charged particle beams in, or emanating, from 
accelerators, the first-order phase ellipse formalism of TRANSPORT is a reasonable 
representation of physical reality; but for other applications, such as charged 
particle spectrometers, caution is in order in its use and interpretation. 
 The equation of an n-dimensional ellipsoid may be written in matrix 
form as follows: 
    X(0)

T
 σ (0)

-1
 X(0) = 1     (27) 

 
Where X(0)

T
 is the transpose of the coordinate vector X(O), and σ(0) is a real, 

positive definite, symmetric matrix. 
 
 The volume of the n-dimensional ellipsoid defined by sigma is 

 
  

 

 (
  

 
  )

 (det σ)
1/2
 , the area of the projection in one plane is A = π(det σ)

1/2
. 

   
This is the "phase space" occupied by the beam. 
 As a particle passes through a system of magnets, it undergoes the matrix 
transformation of Eq. (3). Combining this transformation with the equation of the 
initial ellipsoid, and using the identity RR

-1
 = I (the unity matrix), it follows 
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that: 
 

   X(0)
T
(R

T
    

) σ (0)
-1
 (R

-1
R) X(0) =1 

from which: 
   (RX(0))

T
 (Rσ (0)R

T
)
-1
 (RX(0)) =1    (28) 

 
 The equation of the ellipsoid representing the "BEAM" at the end of 
the system is thus: 
   X(l)

T
 σ (1)

-1
 X(1) - 1      (29) 

 
where the equation for the sigma matrix at the end may be related to that at the 
beginning by: 
   σ (1) = Rσ (0)R

T
       (30) 

 
 In addition to calculating the product matrix R, TRANSPORT also computes 
the signs "BEAM" matrix at the end of each physical element via Eq. (30). 
All of the important physical parameters of the BEAM ellipsoid may be 
expressed as functions of the matrix elements of the sigma matrix at the location 

in question. In particular the square roots of the diagonal elements  (√     )are 

the projection of the ellipse upon the coordinate axes and thus represent the 
maximum extent of the BEAM in the various coordinate directions. The correlation 
between components (the orientation of the ellipse) is determined by the off-
diagonal terms (the σij 's). An illustration of this is given below for a 2-
dimensional ellipse. 
 
 
Description of the Sigma BEAM Matrix 
 
 Consider a 2-dimensional (x,θ) plane projection of the general 
6~dimensional ellipsoid . Let 
 

    σ [
      

      
] 

 
be a real, positive definite, symmetric matrix; the inverse of which is  
 

   σ-1 = 
 

   [
       

       
] 

 
where ϵ

2
 is the determinant of σ. 

 The 2-dimensional coordinate vector (column matrix) and its transpose 
are: 

    X = (
 
 
) and XT = (x θ) 

 
The expansion of the matrix equation X

T
 σ

-1
 X = l is the equation of the ellipse 

 

   σ22 x
2 – 2σ21 xθ  + σll θ

2 = ϵ2 = det σ    (31) 
 
The (x,θ) plane BEAM ellipse represented by Eq. (31) is shown in the following 
figure along with the physical meaning of the sigma matrix elements. 
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The area of the ellipse is given by: 
 

   A = π (det σ)1/2 = πxmax θint = πxint θmax   (32) 
 
 
 

A Two Dimensional BEAM Phase Ellipse 
 

 The correlation between x and θ  (the orientation of the ellipse) depends 
upon the off-diagonal term σ21. This correlation is defined as 
 
 

r21 = r12 = 
   

√      
 

 
So defined r always falls in the range 
 

-1  r ≤ 1 
 

The correlation, r, measures the tilt of the ellipse and the intersection of the 
ellipse with the coordinate axes. 
 
 Since the det R = l for all static magnetic beam transport elements, it 
follows that the determinant of σ(1) and σ(0) are identical under the transforma- 
tion of Eq. (30) . Hence the "phase space" area is an invariant under the 
transformation of Eq. (30) . This is a statement of Liouville's Theorem for the 
magnetostatic fields employed and results from the fact that the det R = l. 
 
 It is perhaps worthwhile noting that this 2-dimensional representation 
of the BEAM matrix has a one to one correspondence with the Courant-Snyder 
treatment of the theory of the Alternating Gradient Synchrotron* as follows: 
 

   [
      

      
] = ϵ [

   
   

]     (33) 

---------------------------------------------------------------------------- 
* E. D. Courant and H. S. Snyder, "Theory of the Alternating Gradient 
Synchrotron", Annals of Physics 3, pp 1-118 (1958). 

---------------------------------------------------------------------------- 
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The Phase Ellipse Beam Matrix used by TRANSPORT 
  
 For static magnetic systems possessing midplane symmetry, the (x,θ) 
plane and (y,ϕ) plane trajectories are decoupled in first-order, i.e. there is 
no mixing of phase space between the two planes. However for mathematical 
simplicity and to allow for the possibility of more general systems, the sigma 
BEAM matrix used in a TRANSPORT calculation has the following general 6-
dimensional construction. 
 
 x θ  y  ϕ  ℓ  δ  
x σ(11)      
θ  σ(21) σ(22)     
y σ(31) σ(32) σ(33)    
ϕ  σ(41) σ(42) σ(43) σ(44)   
ℓ  σ(51) σ(52) σ(53) σ(54) σ(55)  
δ  σ(61) σ(62) σ(63) σ(64) σ(65) σ(66) 
 
 
 The matrix is symmetric so that only a triangle of elements is needed. 
In the printed output this matrix has a somewhat different format for 
ease of interpretation: 
 
   x θ  y  ϕ  ℓ  
x √ (  ) CM      

θ  √ (  ) MR r(21)     

y √ (  ) CM r(31) r(32)    

ϕ  √ (  ) MR r(41) r(42) r(43)   

ℓ  √ (  ) CM r(51) r(52) r(53) r(54)  

δ  √ (  ) PC r(61) r(62) r(63) r(64) r(65) 

 
 

Where:    r(ij) = 
 (  )  

[ (  )  (  )]   
    (34) 

 
 
As a result of the fact that the matrix is position definite, the r(ij)’s 
satisfy the relation 

    |r(ij)|≤ 1      (35) 
 

The physical meaning of the √ (  )   is as follows: 
 

√ (  ) = xmax = The maximum (half)-width of the beam envelope in the 
  x plane at the point of the printout. 

√ (  ) = θmax = The maximum (half)-angular divergence of the beam envelope 
  in the x plane. 

√ (  ) = ymax = The maximum (half)-height. of the beam envelope. 

√ (  ) = ϕmax = The maximum (half)-angular divergence of the beam envelope 
  in the y plane. 

√ (  ) = ℓmax = l/2 the longitudinal extent of the bunch of particles . 

√ (  ) = δ  = The half-width 1/2 (ΔP/P) of the momentum interval being 
  transmitted by the system. 
 

 The units appearing next; to the √ (  )   in the TRANSPORT printout sheet 
are the units chosen for coordinates x, θ, y, ϕ, ℓ and δ = ΔP/P respectively. 
 To the immediate left of the listing of the beam envelope size in a 
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TRANSPORT printout, there appears a column of numbers whose values will normally 
be zero. These numbers are the coordinates of the centroid of the beam phase 
ellipse (with respect to the initially assumed central trajectory of the system). 
They may become non-zero under one of three circumstances: 
 1) When the misalignment (Type Code 8.) is used. 
 2) When a Beam Centroid shift (Type Code 7.) is used. 
or  3) When a 2nd—order calculation (Type Code 17.) is used. 
 
 
Physical Interpretation of Various Projections of the 2-dimensional BEAM Ellipse 
 
 Consider again Eq. (30) σ(1) = R σ(0) R

T
 and expand it in it's most 

general form for the 2-dimensional (x, θ) plane case. 
 

 σ(1) = (
      

      
) (

   ( )    ( )
   ( )    ( )

) (
      

      
) (

   ( )    ( )
   ( )    ( )

) 

 
the result is: 
 
σ(1) = 

[
   

    ( )               ( )     
    ( )          ( )  (            )   ( )           ( )

   
    ( )            ( )     

    ( )
] 

 
 
In the special case when the initial ellipse is erect i.e., σ2l(O)=O, σ(1) reduces 

to:[
   

    ( )    
    ( )          ( )           ( )

   
    ( )     

    ( )
] 

 
Similar results are, of course, obtained for the (y,ϕ) plane. 
 
 If an arbitrary beam transport system is reduced to the most elementary 
first-order form of representing it as an initial drift distance, followed by a 
lens action between two principal planes, and a final drift distance; then we 
observe that for the 2-dimensional representation there are only two basic phase 
ellipse transformations of interest. 
 (1) An arbitrary DRIFT distance and 
 (2) A LENS action 
 Each of these elementary cases are illustrated on Fig.8 for both a 
parallelogram as well as ellipse phase space transformations. Note that a DRIFT 
followed by a LENS action is not necessarily equal to a LENS action followed by 
a DRIFT; i.e., the matrices do not necessarily commute. 
 The phase ellipse transformations for a DRIFT and for a LENS action 
(between principal planes) as shown in Fig. (8 ) may be readily calculated using 
the results of Eq. (37). 
 The 2-dimensional R matrix representing a drift of distance L is: 
 

    R(Drift) = (
  
  

)     (38) 

Substituting into Eq. (37) we find 

σ(1) = [
   ( )      ( )     ( )

    ( )    ( )
]  = [

   ( )    ( )

   ( )    ( )
]    (39) 

Attaching the physical meaning to the matrix elements yields the following 
interpretations:   σ11(1) = σ11(0) +L

2
 σ22(0) 

or 

    (  
 )max = (  

 )max + L
2
(   

 )max    (40) 
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similary    σ22(1) = σ22(0) 
or    (  

 )max = (  
 )max      (41) 

 
Note that this transformation assumes that the initial phase ellipse is erect, 
i.e., σ21(0) = 0. 
 The 2-dimensional R matrix for a lens actions (between principal planes) 
is  

    R(Lens) = (
  

 
 

 
 )     (42) 

Substitution into Eq. (37) yields 
 
 

σ(2) =  [
   ( )  

   ( )

 
   ( )

 

   ( )

  
     ( )

]     [
   ( )    ( )

   ( )    ( )
]    (43) 

Again attaching physical meaning to the matrix elements we have: 

σ11(2) = σ11(0) 

or     (  
 )max = (  

 )max    (44) 

and     σ22(2)= 
   ( )

   + σ22(0)    

 

or     (  
 )max = 

 

   (  
 )max + (  

 )max  (45) 

 
Note the change in sign of the σ21 elements for the Drift and the Lens actions 
indicating the different sense of orientation of the resulting ellipses as 
illustrated in Fig. 8. 
 
The Upright Ellipse: 
 
 A case of particular interest in any 2-dimensional phase ellipse projection 
(e.g., the (x,θ) plane or the (y, ϕ) plane is when the off-diagonal correlation 
matrix elements are equal to zero; i.e., an erect ellipse. In a field-free region 
this corresponds to a so-called "waist" in the BEAM as illustrated in Fig. 9. 
 It is important to understand correctly the meaning of a waist: for an 
existing beam, it is the location of the minimum beam size in a given region of 
the system. Although the waist is the minimum beam size in any given beam, the 
minimum beam size achievable at a fixed target position by varying the focal 
strength of the preceding lens system is not the same as the above defined wait. 
See Fig. 10. In a field-free region, the minimum beam spot size achievable at a 
fixed target position will occur when the preceding lens system is adjusted such 
that a waist precedes the target position. Only in the limit of zero phase space 
area do these quantities occur at the same location. A useful criterion that 
determines the physical proximity of these quantities is the following: if the 
system has been adjusted for the smallest. spot size at a fixed position and if 
the size of the beam at the principal planes of the optical system is large 
compared to its size at the waist, or at the minimum spot size, then the location 
of these quantities, the waist and the minimum, will closely coincide; if, on the 
other hand, the size of the beam does not change substantially throughout the 
system, then the locations of a waist and the minimum beam size may (and usually 
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will) differ substantially. The numerical proximity of these two quantities will 
be discussed in greater detail later in the report. 
 In a field free region (i.e., a Drift), the distance to a waist from any 
location may be readily calculated if the σ matrix at the location is known. Using 
Eq. (36) and the R matrix for a Drift (Eq. 38) we have for the (x,θ) plane: 
 σ21(1) = σ21(0) + L σ22(0) = 0 (specifying that σ(1) shall be at a waist) 
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or the distance to the waist is: 

   L = -
   ( )

   ( )
 = -r21 √

   

   
      (46) 

 
Similarly for the (y, ϕ) plane the distance to a waist is: 
 

   L = -
   ( )

   ( )
 = -r43 √

   

   
      (47) 



- 118 - 
 

Relationship between a Waist and a Parallel-to-Point Image 
 
 A parallel-to—point image in the (x,θ) plane occurs when Rll = O. The 
R matrix corresponding to this is 
 

  R =(
    

      
) = (

   
      

) = (
   

 
 

  
   

)       (48) 

            
     (manca suddivisione centrale nelle 3 matrici) 
Since = |R|= 1, R12R2l for this situation. 
 If we assume an erect ellipse σ(0) as the beginning of the system, the 
final beam matrix σ(1) is given by substitution of Eq. (48) into Eq. (37) as 
follows: 

 σ(1) = [
   

    ( )          ( )

         ( )        
    ( )     

    ( )
]    (49) 

      (manca suddivisione centrale 
for parallel-to-point imaging. 
 Several conclusions may be extracted from this result: the first 
observation is that a waist and a parallel-to-point image will coincide if 
R11=R22=0.  This is equivalent to requiring that the object and image distances 
(measured to the principal planes) are both equal to the focal length f of the 
system. 
 
 The distance to a waist in this example is: 

L = -
   ( )

   ( )
 = 

         ( )

   
    ( )    

    ( )
 = - 

   
 
    ( )

(   )    ( ) (   )    ( )
     (50) 

 
 
If    

 
    R12R22 = 0, a waist and a parallel-to-point image coincide.  

If    
 
    R12R22   0, the waist precedes the image; and if If    

 
    R12R22   0, the 

waist follows the image; unless σ22(0) = 0 (zero phase space area) in which 
case a waist. and an image always coincide. 
 The size of the beam at the image is: 
 

(  
 )max = σ11(1) =    

  σ22 (0)= f
2 (  

 )max      (51) 
 
independent of the source size x0 and of the object distance. 
 The size of the beam at the waist is: 
 

(size at waits)
2 = 

| ( )|

   ( )
 = 

   ( )   ( )

   
    ( )     

    ( )
      (52) 

 
If R22 = s’X = O, the two sizes are equal as expected, otherwise the 
size at the waist is always smaller. 
 
 
Relationship between a Waist and a Point-to-Point Image 
  
 A point—to—point first-order image in the (x,θ) plane occurs when 
R12 = sx = O. The R matrix representing this case is: 
 

  R = =(
    
      

) = (
   

      
) = (

  

 
 

  

 

 

)     (53) 

     (manca suddivisione centrale nelle 3 matrici) 
 
where |R| = 1 = R1lR22, and M is the magnification. 
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If we again assume an erect ellipse σ(0) as the beginning, the final 
beam matrix σ(1) is given by Eq. (37) as: 

σ(1) = [
   

    ( )          ( )

         ( )        
    ( )     

    ( )
]    (54) 

       (manca suddivisione centrale) 
for point-to-point imaging. 
 
 Our first observation is that except for a zero source size, an image and a 
waist will coincide only if R12 = R21 = O Clearly this is not possible 
with a single lens; at least two lenses are needed. Such an optical situation is 
as follows : 
 

 
 
 The distance to a waist is  
 

  L = -
   ( )

   ( )
 = - 

         ( )

   
    ( )    

    ( )
    (55) 

 
 So if R11R21 = cxc’x = 0, a waist and a point-to-point image coincide. 
If cxc’x   0, the waist precedes the image and if cxc’x   0, the waist follows the 
image. 
 The size of the bean at the image 

  (  
 )max = σ11(1) =    

 σ11 (0)= (   )max      (56) 
 
and the size of the bean at the waist is: 
 

(size at waits)
2 = 

| ( )|

   ( )
 = 

   ( )   ( )

   
    ( )     

    ( )
     (57) 

 
Thus if R21 = 0, the two sizes are equal since |R|= R11R22 =1. 
Otherwise the size at the waist is smaller than the image size 
 
Relationship between a Waist and the Smallest Spot Size Achievable at a Fixed 
Target. Position 
Consider the following general situation: 
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Assume that the size of the beam √   (    ) at the principal planes of the lens 
system being adjusted is held constant (i.e., that no other preceding optical 
elements of the system are being varied); and that the remainder of the system 
may be represented by a general matrix R which is also held constant. The focal 
length f is then varied until a minimum spot size √   (   )is achieved at the 
target location. The sigma beam matrix at the target position then has the 
following unique form independent of the orientation of the initial beam ellipse 
at the lens . 
 

 
thus   

     σ11(min) =
   
 | |

   (    )
 

or 

      min   
   | |   

 (    )
    (59) 

 If the position of the waist and the minimum bean size both fall within the 
the same field-free region, then the distance to the waist from the target is: 

     
     (   )

   (   )
   = - 

      

   
   

   (    )

   (   )

         
   (     )

   (    )
  (60) 

 
So if sxs’x = R12R22 = 0, the waist and the minimum spot size  coincide.  
If R12R22 > 0, the waist precedes the target; and if R12R22 < 0, the waist occurs 
after the target position. 
 If the waist and the target positions fall within the same field-free 
region, the following simple relationship exists between the beam size at the 

lens √   (    )  at the waist √   (     )  and at the target   

    
 

     (     )
 

 

   (   )
 

   
 

   (    )
     (61) 

 
If now the lens system is readjusted to form a waist at the target position as 
shown by the dotted lines in Fig. 10, the relative size of this waist and the 
minimum spot size achieved by the previous lens setting is: 
 

   
   (            )

   (               )
   

   
    (               )

   (    )
   (62) 

 
Again we observe that the two quantities approach each other if the size of the 
beam at the lens is large compared to the beam size at the target. 
 There are several cases of special interest that may be derived from 
the above equations: 
 1) If R22 = O at the target position, then a minimum spot size at the 
target is also a waist. This corresponds to point-to—parallel imaging from the 
principal planes of the variable lens system to the target position. Beyond the 
last lens in the field-free region preceding the target, R12 = a constant if 
R22 = 0; thus we conclude from Eq. (59) that in this field-free region, the 
minimum spot; size achievable at a target is a waist and is independent of the 
target position. Such a system is a "Zoom" lens. 
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 2) If there are no lenses beyond the variable lens system, i.e., R 
is an entirely field—free region (a drift), then R is of the form: 
 

  (
  
  

)  (
      

      
) 

In this situation R12R22 = L is a positive quantity, consequently the waist always 
precedes a minimum spot size at a target. A case of particular interest is when 
the minimum spot size achievable is equal to the initial beam size at the lens. It 
then follows from Eq. (60) that Z. -L/2, i.e., a waist occurs midway between the 
lens and the target. From Eq. (61), the ratio of the size of the beam at the lens 
and at the waist is: 
 

    
 (    )

 (     )
 √

   (    )

   (     )
  √      (63) 

 
Combining this result with Eq.(59), 

   L =     
 (    ) (   )

| |  ⁄
 

(    )

 (     ) (     )
 

or  

     L = 
    (     )

 (     )
     (64) 

 
where L is the longest distance a beam can drift without exceeding its initial 
size at the lens. 
 
Imaging from an Erect Ellipse to an Erect Ellipse 
 
 The general sigma matrix for imaging from an erect ellipse to an erect 
ellipse may be derived by inspection from Eq. (36) by setting σ21(1) = σ2l(O) = 0. 
The result is: 
 

σ(1) = [
   
     ( )     

    ( )                                             

                                                      
     ( )     

    ( ) 
]   [

   ( )             

                  ( )
]      (65) 

 
 
For symmetric magnetic systems Rll R22. Using this property and the fact that 
| |= 1, it follows that Rl2R2l = (   

    )   So for symmetric magnetic systems 
Eq- (65) reduces to: 
 

σ(1) =[        
[ 

   | |

   
]                           

                                     [ 
   | |

   
]     

] = [
   ( )             

                  ( )
]       (66) 

 
The above equations may be used to calculate the optimum design parameters for 
periodic beam transport systems . 
Example No. 1: 
 Consider a unit-cell of a periodic focusing array consisting of focusing 
elements only as indicated below.  
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The R matrix for the unit-cell, i.e., from the principal planes of the first lens 
to the principal planes of the second lens, is 

    R = [
                          

 
 

 
 

 

    
                   

  ]    (67) 

 
If now we require that the beam envelope possess symmetry coincident with the lens 
symmetry i.e., that erect ellipses occur at me principal planes of each lens and 
a waist midway in between, and furthermore that the beam size at the second lens 
be kept; to a minimum and equal to the beam size at the first lens: then 
substituting Eq.(67) into Eq. (66) and setting σ11(1) to be a minimum yields: 
    

    √   ( ) = √   ( ) 
 

   f = ℓ = 
 

 
√

   ( )

   ( )
  √

   ( )

   ( )
       (68) 

 
where σ11(0) and σ22(0) are measured at the principal planes of the first lens. 
and finally    

     
 (   )

 (   )
  √

   ( )

   ( )
 = √       (69) 

 
Note that the ratio of the maximum to the minimum beam size (Eq. 69) is 
independent of the phase space area and of the lens spacing. 
 
Example No. 2: 
 If the unit cell is a FODO array as follows: 

 
The R matrix for the unit cell (from the principal planes of the first lens to the 
principal planes of the third lens) is: 
 
 

        [
                                     (  

 

 
)

  
 

   
(  

 

 
)                    

]    (70) 

 
 
 If we now impose the symmetry requirements that erect ellipses occur at 

the principal planes of each lens; and that the beam size √   ( )  at lens 3 be 

a minimum and equal to the beam size √   ( )  " at lens 1, then it follows that: 

   √   ( )  = √   ( )   

 

   
 

 
 

 

   √ 
≅ 1.236       (71) 

 

   
   ( )

   ( )
  

   √ 

   √ 
  ≅      
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or 

     
 (   )

 (   )
  √

   ( )

   ( )
≅           (72) 

and finaly 

    ℓ ≅        √
   ( )

   ( )
      (73) 

 
where σ11(0) and σ22(0) are measured at the principal planes of the first 
lens in the FODO array. 
 For a FODO quadrupole array where the field strength is held constant 
for all elements rather than the focal lengths, the results are somewhat 
different than those above. This case may be readily calculated via TRANSPORT 
using the above results as initial guesses in the calculation. 
 
 
Relationship between a First-Order Point-to—Point Image and the Minimum Spot Size 
Achievable at a Fixed Target Position 
 
 This problem is not as easy to explore as were the preceding ones because 
the question arises "the first-order image of what?” If, however, we restrict 
the discussion to a thick or thin lens system that does not have intermediate 
images between the source and the image under consideration, then the following 
comments are applicable. 
 The ratio of the minimum beam size to the size of a first—order image 
at a fixed target position may be calculated using Eq.'s (56) and (59). From 
Eq.(59) we have:  

       (   )     | |

   (    )
  

 
and from Eq. (56) the size of a first-order image at hue position is: 
 

√   (     ) = | |√   (      ) = (
 

 
)√   (      ) 

 
where M is the magnification of the first-order image, p is the object distance 
measured to the principal planes, and L is the distance to the target measured 
from the principal planes. 
  
 The ratio of sizes is 

   
   (   )

   (               )
 = 

  | |

   (      )   (    )
     (74) 

 
Using Eq.(36), we may write 
 

   (    )     (      )         (      )        (      )    (75) 
 
and since 
 

| |     (      )    (      )      
 (      ) 

 
it follows that the first-order image will coincide with the smallest spot size 
only if the orientation of the initial beam ellipse at the object is such that 
 
   p σ21(object) = - σ11 (object)    (76)  
or if σll(object) = O 1.e., for a point source. 
 
 For an erect ellipse at the source and the lens adjusted to provide a 
minimum spot size at the target, it can be shown that the first-order image will 
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always follow the target position (the minimum spot size) by a distance 
 

       | | 
   (      )

   (    )
 =   | |

  
 

  (    )
   (77) 

 
where L is the distance to the target position from the principal planes of the 
lens system, x0 is the source size, and M is the magnification of the first—order 
image. 
Again we observe that the ratio of the beam size at the source and the beam size 
at the "lens" is the criterion determining the proximity of these two quantities. 
 
 
Orientation of the Major Axes of a Phase Space Ellipse 
 
 The matrix equation for a coordinate rotation as shown in Fig. 11 is 
 

 
 
 

    (
  

  
)   (

         
        

) (
  

  
)    (78) 

 
or 

X1 = M X0  
 
 The equation of an ellipse in either set of coordinates is 

X
T 
σ
-1 
X = 1 where X = (

 
 
); X

T
 = (x θ) 

and the transformation from σ(0) to σ(1) is 
 

σ(1) = M σ(0) M
T
  

 
provided | |= 1, which it does. 
 
 If we assume a general ellipse for σ(0) and an "erect" ellipse for σ(1), 
i.e., 
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σ(0) = [
   (  )      ( )

    ( )      ( )
] and σ(1)  = [

   ( )             

                  ( )
] 

 
 
It follows from Eq.(72) that: 

 
σ21(1) = 0 = M11M21 σ11(0) + (M11M22 +M21M12) σ12(0) + M12M22 σ22(0) 

 
from which 

    Tan 2α = 
    ( )

   ( )     ( )
      (80) 

or using the definition 

r21 = 
   

√      
 

 
an alternate form of expressing the ellipse orientation is 
 
 

   Tan 2α =
    √      

       
  = 

    

√
   
   

   √
   
   

   
     (81) 

 
 Clearly α is dependent upon the units chosen for σ1 1 and σ22 except in the 
obvious case of α = O; i.e., an erect ellipse. 
 
 

SECOND -ORDER ABERRATIONS 
Section III 

 
TRANSPORT has the capability of calculating the second-order matrix 
elements (aberration coefficients) of any static-magnetic beam transport system 
composed of combinations of bending magnets, quadrupoles, solenoids, sextupoles 
and interspersed drift spaces. It is assumed that mid-plane symmetry prevails for 
any given magnetic element in a system (except for solenoids) but not necessarily 
for the system as a whole. The notation used in a TRANSPORT printout is described 
in reference 1 (SLAC-75) beginning on page 46?. The subscript notation is the same 
as that used for first-order where the subscript 1 means x, 2 means θ, 3 means y, 
4 means ϕ, 5 means ℓ, and 6 means δ. 
The symbol Rij has been used to signify a first-order matrix element and 
the symbol Tijk will be used to signify a second-order matrix element. Thus we 
may write the second-order Taylor expansion representing the deviation of an 
arbitrary trajectory from the central trajectory as: 
 

xi(t) = ∑      ( )
 
    + ∑ 

   ∑       ( )  ( )
 
    

 
 
where x1 = x  x2 = θ x3 = y x4 = ϕ  x5 = ℓ  and x6 = δ  denotes the subscript 
notation. In an actual computer printout, the TiJk 's are abbreviated as (i jk); 
for example T126 = (x|θ0 δ) would appear in a printout as (l 26) followed by the 
computed value of the aberration coefficient for the system being designed. 
 In order to modify the magnitude of any given aberration coefficient, it 
is necessary to introduce multipole component(s) of the magnetic field of order 
equal to or less than the order of the aberration. Thus sextupole, quadrupole and 
dipole components of the field may all be used to modify any given second-order 
aberration. But, in practice, the second—order aberrations are usually minimized 
by only introducing sextupole components so as not to disturb the first-order 
optics of the system. It should always be kept in mind, however, that it may be 
beneficial to go back and change the first-order solution (optical mode) so as to 
provide a more favorable situation for correcting aberrations; a wise selection 
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of the first-order optical mode may in many instances be the deciding factor 
between the success or failure of a design. 
 For a fixed location of a sextupole component, the partial derivative 
of any second-order aberration coefficient Tijk with respect to the strength S2 

of a given sextupole component is a constant. i.e., 
 
      

    
= a constant = the coupling coefficient of S2 to Tijk . 

T 
hus minimizing a selected group of aberrations is a straight forward problem 
of solving a set of simultaneous linear equations once the coupling coefficients 
are known . 
 
 The strengths of the sextupole components may be determined directly by 
TRANSPORT. The user may either constrain certain second order matrix elements to 
certain values , or may minimize the net second-order contributions to a given 
component of the beam ellipsoid 
 
 
Second-Order Phase Ellipsoid Formalism 
 
 It will be noted by the user, that a second~order TRANSPORT calculation 
modifies the phase-ellipsoid printout. In a second-order run, TRANSPORT calculates 
and prints out the second-moments of the phase space distribution function in the 

√    columns. In addition, it also calculates and prints out the new coordinates 

of the centroid (first—moment) of the phase space distribution function and 

tabulates this result to the left of the √     columns in the same manner as it 

does for a magnet misalignment run. 
 Caution should be used in the use and interpretation of the second-order 
phase ellipsoid results especially if it is known or suspected that the phase 
space distribution resulting from a second-order run is not symmetrical about the 
beam centroid. To be certain of the situation in any given design, it would be 
wise to calculate the actual distribution function by using the Monte—Carlo 
computer program TURTLE

1
 

 The actual method used in TRANSPORT by which the second-order terms are 
included in the beam ellipse is described in the following report. The reader 
should bear in mind that the derivation is based on a gaussian initial beam 
distribution. 
For any other initial distribution the second order effects on 
the beam ellipsoid should be regarded only as an approximation. 
 
 
 
 
 
 
 
 
 
----------------------------------------------------------------------- 
1 D. C. Carey, "TURTLE, A Computer Program for Simulating Charged Particle Beam Transport Systems", 
N.A.L. Report No. 64, Fermi National Accelerator Laboratory, Batavia, Illinois (1971) 

----------------------------------------------------------------------- 
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Second Order Contributions to Beam Dimensions 
David C. Carey 

May, 1972 
I. Introduction 
 The phase space region occupied by an aggregate of charged  
particles in a beam line is often represented by a higher 
dimensional ellipsoid. Given no further information, one 
might interpret such an ellipsoid as an envelope inside of which 
particles are distributed uniformly, or as giving the scale 
dimensions of a gaussian distribution. The latter case has 
the advantage that is easily adapted to include higher order 
effects of the beam line. In either case the parameters of 
the ellipsoid are simply related to the first and second moments 
and therefore the width of the distribution in any coordinate. 
In first order an ellipsoid at any point in a beam line is 
transformed into another ellipsoid at any other location in a 
beam line. In second and higher orders a transformation from 
one location in a beam line to another hill cause the ellipsoid 
to become distorted. One can still, however, calculate the 
first and second moments of the distribution, and thereby 
obtain a measure of its dimensions in any coordinate. 
 Below we elaborate on the methods for calculating the 
ellipsoid parameters at any point in the beam line. Much 
of the first order theory can be found in the work of Brown 
and Howry.

l
 It is included here for completeness. 

 
 
II. The Ellipsoid Formalism 
 
 The position and motion of a particle in a beam line may 
be represented via a six—dimensiona]_ vector. 
 

     x =

(

  
 

 
 
 
 
 
 )

  
 
     (1) 

 
The coordinates x and y represent respectively the 
horizontal and vertical displacements at the position of the 
particle, θ and ϕ, the angles with the axis of the beam line 
in the same planes. The quantity ℓ represents the longitudinal 
position of the particle relative to a particle traveling on 
the magnetic axis of the system with the central momentum 

designed for the system. The remaining quantity δ = 
  

 
 

gives the fractional deviation of the momentum of the particle 
from the central design momentum of the system. 
 An ellipsoidal hypersurface in this six—dimensional space 
may be represented by the equation: 
 
     x

T
σ
-1
 = l      (2) 

where σ
-1
 is a symmetric positive definite matrix. We represent 

this matrix as an inverse for reasons which will become apparent 
later. At this stage the center of the ellipsoid is assumed 
to lie at the origin of the coordinate system. The ellipsoid 
may be taken to be the envelope of a uniform distribution, or 
the scale in a gaussian distribution, giving a particle density: 
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    ρ = C exp (-½ x
T
σ
-1
x)    (3) 

 
For any symmetric matrix there exists a coordinate 
system in which that matrix is diagonal and an orthogonal 
transformation to that coordinate system.

2
 Let us represent 

the orthogonal transformation by the matrix 0, so that: 

    xi =  ∑       
      (4) 

 

where   
  are the coordinates in the frame where the transform of σ

-1
 and therefore 

that of σ are diagonal. Calling the matrix σ transformed to the new frame    we 
now have:  

        ∑       
            (5) 

and equation (1) becomes 

                                (1a) 
Specializing to the gaussian distribution, it is now an easy matter to calculate 
the second moments in the new frame since the coordipates are decoupled.  
We arrive at: 

      
   

     
        

            (6) 

 
The second moments in the old frame are now: 
 

       ∑         
   

  ∑         
   

   ∑           
              (7) 

 
Therefore in this case the elements of the matrix σ give the second moments of the 
distribution in the original coordinate system. The density function, properly 
normalized, now becomes: 
 

      
  

√   ( ) (  ) 
 exp (        )   (8) 

whore NO is the total number of particles. Since the matrix 0 
is orthogonal the determinants of σ and σ  are equal. 
 
 The elements of the matrix σ may be put in more convenient form for 
interpretation. The square roots of the diagonal elements may be taken as giving 
the half widths xo of the distribution in a given coordinate while the off-
diagonal elements may be related to the correlations rij, so 

          √    

              √            (9) 

 
Since, for any positive definite symmetric matrix σ, we have:

2
  

                    -    
         (10) 

 
the correlations must all obey the inequality 

      |   |   1     (11) 

 
 If the ellipsoid is interpreted as describing the envelope of a uniform 
distribution, then the xoi represent the maximum extents of the beam in the given 
coordinates. 
 
 
III. The Effect of a Beam Line 
 
 A. First Order 
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 If we now let   
( )
 be the coordinates of a ray at the initial point in a 

beam line, and   
( )
 the coordinates at some later point, the two are related by the 

equation: 

      
( )
= ∑      

( )
     (12) 

 
If we continue to assume a distribution centered at the origin the first moments 
at both initial and final point will be zero. 
The second moments will now be given by: 

        
( )

    
( )

  
( )

  ∑         
( )

  
( )

      (13) 

    

    =∑          
( )

   

or more concisely 

    σ(2) = Rσ (1)RT     (14) 
 
 To first order an ellipsoid at the initial point will transform into an 
ellipsoid at the final point, so that the equation:  

     ( )   ( ( ))-1 ( ) = 1    (15) 
will give the envelope of the particle distribution at the later point. 
 
 
 B. Second Order 
 In second order the transformation on the coordinates 
effected by the beam line is given by:  

      
( )

  ∑      
( )

 ∑           
( )

  
( )
    (16) 

 
We employ here a symmetric T matrix whose off—diagonal elements are half 
those of the T matrix used by Brown. The first and second moments of the 
distribution at the final point are now given by 
 

  
( )

  ∑      
( )

 ∑           
( )

  
( )
       (17) 

 

  
( )

  
( )

  ∑             
( )

  
( )
   

 

+  ∑ [                ]      
( )

  
( )

  
( )
 

 

+∑           
( )

  
( )

  
( )

  
( )

     

 
 For a symmetric, on—axis initial distribution, the first and 
third moments vanish. The problem now reduces to determining 
the fourth moments of the initial distribution. 
 As an extension of previous notation we now denote the 

fourth moments of the distribution about the initial point by      
( )

. 
We consider the coordinate system in which the matrix of second moments σij  
is diagonalized, denoting the moments in 

this frame by   . Then from equation (7) we have: 
 

         ∑          
 

       (18) 

 

    = ∑          
 

  

We continue to specialize to a gaussian distribution so that 
the fourth moments will be directly derivable from the second 
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moments. In the diagonal frame the coordinates separate, and 
the fourth moments are easily calculated. The only ones which 

are non-zero are        
        

 , or      
 , for i  j, and      

  with 

        
      

    
          (19) 

        
      

    
    

        
      

    
    

        
        

    
    

 
so that in general: 

        
              

    
             

    
              

    
      (20) 

 
Now if under the transformation O, the fourth moments transform 
as:  

        
 

= ∑                  
 

                   (21) 

 
then from equation (la) we finally arrive at: 

        
 =    

    
     

    
      

    
             (22) 

 
Substituting into equation (17) we determine that:  

       
( )

  ∑        
( )

        (23) 
 

  
( )

  
( )

  ∑          
( )

    (∑        
( )

  ) (∑        
( )

  ) 

+   ∑ (∑        
( )

 )  (∑        
( )

 ) 

 
 
Note that, because of the symmetry properties of both T and σ  
that the two expressions in parentheses in the last term of the 
second equation represent the same array. From a practical 
standpoint this means that it needs to be calculated only once. 
 We see from equation (23) that the centroid of the distribution at the 
final point no longer coincides with the beam axis. 
Letting  σ

(2)
 represent the matrix of second moments about the 

new centroid we now have:  

      
( )

    
( )  

( )     
( )  

( )      (24) 

 

   = ∑       
( )

   

 

   +   ∑ (∑        
( )

 )  (∑        
( )

 ) 

 
 
 
IV. Off-Axis Initial Distribution 
 
 Now consider a gaussian distribution whose center does not 
coincide with the beam axis. Letting the coordinates of the 

centroid by   
( )
, we have for the coordinates of a ray:  

       
( )

      
( )

  
( )

       (25) 

We let the matrix σ represent the moments of the distribution 
about its centroid so that:  
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( )

  
( )

     
( )

    (26)   

    

      
( )

  
( )

  
( )

  
( )

       
( )

 
 
Equation (17) continues to hold for the moments of the distribution 
about the beam axis, vhile equation (22) holds for the moments 
about the centroid. We must therefore express one set of moments 
in terms of the other. 
Using equations (22), (25), and (26) and applying the first 
part of equation (24) to the initial distribution, the initial 
third and fourth moments are given in terms of the initial 
first and second moments as follows:  
 

    
( )

  
( )

  
( )
 =   

( )
  
( )

  
( )
 +   

( )
  
( )

  
( )
  

 

  +   
( )

  
( )

  
( )
 - 2   

( )
  
( )

  
( )
   

 

  
( )

  
( )

  
( )

  
( )

      
( )

  
( )

  
( )

  
( )
 +  

( )
  
( )

  
( )

  
( )
  

 

  +   
( )

  
( )

  
( )

  
( )
  - 2   

( )
  
( )

  
( )

  
( )
   (27) 

 
 
Substituting into equation (17) and rearranging terms we arrive 
at the following expressions for the first and second moments 
of the distribution at the final point. 
 
 

    
( )

  ∑      
( )

 ∑           
( )

  
( )
      (28) 

   

    
( )

  
( )

  ∑         
( )

  
( )

      
( )

  
( )
 - 2   

( )
  
( )

     

 

+ 2 ∑ (      
( )   ∑        

( )  
( )

 )  (      
( )  ∑       

( )  
( )

  ) – 

 

   (∑       
( )

 ) (∑       
( )

 )  

 

where   
( )

  ∑       
( )

 ∑            
( )

  
( )

 

 
is the image of the original centroid. 
 We may now again use equations (9) and (24) to relate this 
matrix of second moments to the final beam half widths and 
correlations. 
 

Reference 
1. Karl L. Brown , Sam K. Howry , SLAC Report No . 91 (1970) . 
2. F. R. Gantmachcr, The Theory of Matrices , Chelsea Publishing Co., New York 
(1959). 
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A Systematic Procedure for Designing High Resolving Power Beam Transport Systems 
or Charged Particle Spectrometers 
 
 The following is a report submitted to the Third International Magnet 
Symposium held in Hamburg, Germany - May 1970. It is a general description of a 
suggested procedure for designing systems to any order and includes the derivation 
of the coupling coefficient of an nth-order multipole to any nth-order aberration 
coefficient. The report also derives the multipole strengths for the three 
techniques for introducing multipole components into a system: namely, 1) pure 
multipole fields, 2) non-uniform fields, and 3) contoured entrance or exit 
boundaries of magnets . 
 The notation used in this report is identical to TRANSPORT notation 
except for the following: 
 Replace x’ and y’ in the report by σ  and ϕ respectively to convert to 
TRANSPORT notation 
 
 

REPORT SUBMITTED TO THE THIRD INTERNATIONAL mam sYMPosIUM 
HELD IN HAMBURG, GERMANY-May 1970 

by 
Karl L. Brown  

Stanford Linear Accelerator Center  
Stanford, California 

 
 
 

Summary 
  
 By extrapolating the systematics of the general first- and second-order 
theory of beam transport optics (1, 2,3) to include higher order multipole terms, 
it has been possible to evolve a simple, step by step, procedure for the design of 
high resolving power static-magnetic beam transport systems . The choice of the 
appropriate dipole and quadrupole elements for a given system may be determined 
once the resolving power, solid angle, momentum range and detector system of the 
instrument have been specified. The partial derivative of any nth-order aberration 
coefficient with respect to an nth-order multipole component located anywhere in 
the system has been derived. From this "coupling coefficient", the strength and 
the optimum location of multipole element(s) to correct or modify a given 
aberration or group of aberrations is uniquely determined. 
 
I . Introduction 
 
 Within the last two decades, significant advances have been made in the 
understanding of charged particle optics. Perhaps the first major contribution was 
the development of the theory of the Alternating Gradient Synchrotron (A.G.S.) by 
Courant, Livingston, and Snyder(4) which led to the first-order matrix algebra 
formulation of beam-transport optics. Subsequent to this a second-order matrix 
algebra was developed by Brown, Belbeoch, and Bounin(5); followed by the 
development at SLAC of the digital computer program called TRANSPORT(6) that is 
widely used today in many laboratories for solving first- and second-order static-
magnetic beam transport problems. In principle, the second-order matrix formalism 
my be extended to any order, but in practice this approach has proved to be too 
cumbersome. Thus beyond second-order it has been more efficient to use computer 
ray-tracing programs which integrate the basic differential equation of motion 
of the charged particles through the known or assumed magnetic fields. The 
fundamental difficulty with ray-tracing has been the required computational time 
to complete a design involving the minimization of many higher-order aberrations. 
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 In this report, we will outline a systematic procedure for the design of 
high-resolution systems based upon the extrapolation of the first- and second-
order theory (1, 2,3) to include higher-order multipole components. A general 
equation has been derived for the coupling coefficient of an nth-order multipole 
to any given nth-order aberration coefficient. As will be shown later, these 
coupling coefficients are a function only of the characteristic first—order 
trajectories (matrix elements) introduced and defined in References l and 2. 
 
 Given this information, a systematic procedure for designing high 
resolution beam transport systems is as follows: 

1) Find a satisfactory first-order solution to the problem using TRANSPORT or 
its equivalent. 

2) Calculate and make the necessary corrections to the second-order 
aberrations by introducing sextupole components into the system. The "best" 
locations and strengths of the sextupole components required may be 
selected via the coupling coefficients for the aberrations to be minimized. 

3) Calculate and make the necessary corrections (via ray-tracing) to the 
third-order aberrations by introducing octupole components into the system. 
(Note that an nth-order multipole couples with terms of order n or higher 
but not with terms of order lower than n. Thus an octupole component will 
not disturb the first- and second-order solutions already found from steps 
1 and 2.) 

4) Repeat the above procedure up to the multipole order desired or needed to 
achieve the design objectives. 

 
 If the design requires a solution to nth-order and m multipoles at each 
order are necessary to minimize the aberrations, the number of computer runs 
previously needed to complete a design was at least (n+m)

2
. Having a knowledge of 

the coupling coefficients, after the first-order design has been selected, now (in 
principle) reduces the number of computer runs required to n. Since ray-tracing is 
very time consuming, this is indeed a significant saving. 
 
II. Theory* 
--------------------------------------------------------------- 
* The notation used in this report follows that used in Ref. 1 unless otherwise indicated. 
--------------------------------------------------------------- 

The following results are applicable to static-magnetic charged particle 
optical systems possessing median plane symmetry. As in Ref. 1, we shall use a 
right-handed curvilinear coordinate system (x, y, t) where x and y are the trans- 
verse coordinates. x is the outward normal distance in the median plane away 
from the central trajectory, y is the perpendicular distance from the median 
plane, t is the distance along the central trajectory, and is the curvature of the 
central trajectory. 
The existence of the median plane requires that the scalar potential ϕ be an odd 
function of y, i.e., ϕ(x,y,t) = - ϕ(x,y,t). The most general form of ϕ  may 
therefore, be expressed as follows: 
 

ϕ(x,y,t) =  (     )   ∑ ∑        
 
   

 
   

  

  
 

     

(    ) 
     (1) 

 

where the coefficients         are functions of t. 

 In this coordinate system, the differential line element dT is given 
by  

dT
2
 = dx

2
 + dy

2 
+ (1+hx)

2
 dt

2 

 
The Laplace equation has the form 
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Substitution of (l) into (2) gives the following recursion formula for the 
where prime means 3? , and where it is understood that all coefficients  
 

                         
              

                                    (3) 

  +(    )            (    )            (   )            

                   (   )             + n(   )(   )            

 

where prime means 
 

  
 ,and where it is understood that all coefficients A with one 

or more negative subscripts are zero. This recursion formula expresses all  
the coefficients in terms of the midplane field By(x, 0,t): 
where  

       (
    

   )   
   

  = functions of t       (4) 

 
Since ϕ  is an odd function of y, on the median plane we have Bx = Bt = O. The 
normal (in x direction) derivatives By on the reference curve defines By over the 
entire median plane, hence the magnetic field B  over the whole space. The 
components of the field are expressed in terms of ϕ  explicitly by B =    or 
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The expression for the magnetic field on the midplane is 
 

  (     )    ∑     
  

  
 
               (6) 

 
 At this point we deviate from the notation and formalism of Ref. 1 and 
introduce Kn(t),the multipole strength per unit length; and sn’, the total 
multipole strength of a static-magnetic field. 
 We rewrite equation (6) as 
 

By(x,o,t) = Bρ ∑   ( )  
   

           (7) 
 

Where Bρ = 
 

 
 = 

  

 
 is the magnetic rigidity of a particle of momentum Po and 

charge e along the central trajectory; from which 
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We define Sn as 
  

   ∫   ( )  
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Sn so defined is the strength of the nth-order multipole component of a field 
over the interval of integration. 
 
Multipole Strengths for Pure Multipole Fields  
 
 Consider the scalar potential of an nth-order [2(n+1)pole] pure multipole 
element: 
 

   ϕ = 
   

   

(   )   [   (   )  ]     (10) 

where 
 
x = r cosθ   and y = r sinθ  
 
 
Bo is the field at the pole and a is the radial distance to the pole from the 
central trajectory. 
 Expanding ϕ as a function of x and y and differentiating, we have 
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From which 
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Where L is the length of the multipole element. 
For a dipole and the dipole strength is 
 

    
 

 
   (The angle of bend of the central trajectory) 

For a. quadrupole and   
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For a sextupole and 
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etc. for higher-order multipoles . 
 
 Multipole Strengths for a Non-Uniform Field Expansion 
 
 From the midplane field expansion of a. non—uniform magnetic field 
and evaluated over the length L of the central trajectory is: 
By(x,o,t) = By(o,o,t) [       (  )   (  )       ]    (12) 
 
K0 = h,  K1 = -nh

2
,  K2 = βh

3, 
 etc. 

 
and Sn evaluated over the length L of the central trajectory is: 
 
S0 = hL =α  as before, 
 
S1 = -nh

2
L,  and S2 = βh

3
L, etc.  
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Multipole Strengths for a Contoured Entrance or Exit. Boundary of a Magnet 
 
 A third method of introducing multipole components is via a curved entrance 
or exit boundary of a magnet. To calculate the multipole strengths in this case, 
we integrate equation (7), holding x constant, as follows: 
   

∫   (     )     ∑  ∫   
 

 
( )     ∑   

  

 
   (13) 

 
To relate this to the field boundary, we assume By to be a constant inside the 
effective field boundary and zero outside (i.e., we ignore the finite extent 
of the fringing field) . In this sharps -cutoff approximation, the field boundary 
Z = Z(x) is: 
 

Z = 
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 = x tan β + 
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where h = 
 

 
 and β = The “quadrupole strength” 

The radius of curvature of the boundary is related to the sextupole strength as 
follows: 
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From equation (13), we note that a positive multipole component of the field 
increases the ∫    for a positive x; thus a positive sextupole is represented 
by a concave surface of the entrance or exit boundary. 
 
 The Descrigtion of the Trajectories as a Taylor's Expansion 
 
 The deviation of an arbitrary trajectory from the central trajectory is 
described by expressing x and y as functions of t. The expressions will also 
contain xo, yo, x’o, y’o and δ, where the subscript o indicates that the quantity 
is evaluated at t = o. The prime (') denotes the derivative with respect to t, and 
δ =  is the fractional momentum deviation of the ray from that of 
the central trajectory. These five initial boundary values will have the value 
zero for the central trajectory itself. an and y are expressed as a five-fold 
Taylor expansion using these initial boundary values. The expansions are 
written: 
 

 ( ) = ∑( |  
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         (15) 

 
Here, the parentheses are symbols for the Taylor coefficients; the first part 
of the symbol identifies the coordinate represented by the expansion, and the 
second indicates the term in question. These coefficients are functions of t to be 
determined. The symbol ∑ indicates summation over zero and all positive integer 
values of the exponents Κ, λ, μ, ν, χ ;. The constant term is zero, 
and the terms that would indicate a coupling between the coordinates x and y 
are also zero; this results from the midplane symmetry. Thus we have 
 
(x|1) = (y|1) = 0 
 
(x|y0) = (y|x0) = 0 
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(x|y’0) = (y|x’0) = 0         (16) 
 
Here, the first line is a consequence of choosing the central trajectory as 
the reference axis, while the second and third lines follow directly from 
considerations of median plane symmetry. 
 Since they will appear often in the formalism, it is convenient to 
introduce the following abbreviations for the first-order Taylor coefficients: 
 
(x|x0) = cx(t) (x|x’0) = sx(t)  (x|δ) = dx(t) 
 

(y|y0) = cy(t) (y|y’0) = sx(t)      (17) 
 

 
When the transverse position of an arbitrary trajectory at position t is 
written as a first-order Taylor's expansion as a function of the initial 
boundary conditions, the above five quantities are just the coefficients 
appearing in the expansion for the transverse coordinates x and y as follows: 
 
x(t) = cx(t)x0 + sx(t)x’0 + dx(t)δ  + higher-order terms 
and 
y(t) = cy(t)y0 + sx(t)y’0 + higher-order terms. 
 
 
III. Solution of the Equations of Motion 
 
 The general differential equation of motion of a charged particle in a 
static-magnetic field valid to all orders in x and y and their derivatives as 
derived in Ref. 1, equation (5) is: 
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 If this equation is solved to nth-order for the Taylor's coefficients 
of equation (15), it will be observed that the result has the remarkably 
simple form: 
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  + terms containing K0’ ……….Kn-1     (19) 
 
where the variable of integration is τ and n = (κ + λ + μ + ν + χ ). 
 The xi have the following meaning: 
 

x1 = x(t) x2 = x’(t) x3 = y(t) x4 = y’(t) 
 

cx’ cy’ sx’ sy’ and dx are defined by equation (17) and in general are function 
of the variable of integration τ over the interval of integration. Kn is defined 
by equation (8) and in general is also a function of τ . 
The Gi's are Green's fimctions where: 
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Note that the Gi‘s are Just first-order Taylor's coefficients measured from the 
location (τ) of the multipole component to the end of the system (t) . 
 Thus we see that the coupling coefficient to an nth-order multipole is a 
function only of the first-order matrix elements cx, cy, sx, sy, dx and their 
derivatives with respect to t. 
 From median-plane symmetry considerations, the allowed aberrations are 
those with and/or y’ appearing an even number of times in the Taylor coefficient. 

For example ( |  
 ), (x|     ) and ( |  

    ) are allowed aberrations;  
whereas ( |  ) ( |  

    )     ( |  
 ) are not allowed and are therefore equal to zero. 

 
 The minus sign is used when y and/or y’ appear 0, 4, 8, 12 …. times and the 
plus sign is used when y and/or y’ appear 2, 6, l0 …. times. For example for the 

coefficients ( |  
 ) and ( |  

 ), the minus sign is applicable; whereas for the 

coefficients ( |  
 )  and  (  |  

    
 ) the plus sign is applicable. 

 
 Equation (19) is derived by observing in the pattern of the solution of the 
differential equation that an nth-order aberration term containing the nth-order 
multipole strength factor Kn cannot include multipole strength factors of lower 
order than n; or stated physically, an nth-order multipole cannot couple to 
aberrations (terms) of order lower than n. This fact allows the recursion formula 
equation (3) to be reduced to the simple form 
 

     A2m+3,n = -A2m+1,n+2     (21) 
 
in so far as it applies to the derivation of nth-order terms containing only Kn. 
As a consequence, the scalar potential for deriving these terms assumes the 
simplied form 
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From which, it follows that 
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For terms containing only Kn, the basic differential equations assume the 
form: 
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             (24) 

 
Substituting the Taylor's expansion of equation (15) and solving for the nth-order 
terms using a conventional Green's function solution (see Ref. 1) yields equation 
(19) above. 
 
 
IV. Interpretation and Use of Equation (19) 
 For most practical cases of interest, Kn will be a constant over the 
interval of integration. In this event we may define the coupling coefficient 
of an nth—order multipole to an nth—order aberration as the partial derivative 
of equation (19) with respect to the Kn in question as follows: 
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where now the interval of integration is over the multipole length L represented 
by Kn. For a distributed multipole component (such as in a non—uniform field 
bending magnet), equation (25) is used. 
 In many cases where a curved entrance or exit pole contour is used or a 
short multipole magnet is used such that the characteristic first-order functions 
cx, cy, sx, sy, and dX are essentially constants over the interval of integration 
(the length of one multipole), then the coupling coefficient is best 
defined as the partial derivative of equation (19) with respect to Sn as follows: 
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Examples 
 Assume a situation where the end of the system is a point-to-point image 
or the origin (i.e., sx(t)=0) then using equation 26, the coupling coefficients 
of a sextupole of strength S2 to various second order aberration coefficients 
are:  
 (  |  
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etc. Where the Green's function used in these examples is 

 
G1 = sx(t)cx - cx(t)sx = - cx(t)sx (since sx(t) = 0 for point-to-point  
       imaging) 
 
The aberration and cx(t) are evaluated at the end of the system. cx(t) is equal to 
the magnification Mx in the examples given. The remaining coefficients cv, sx, sy 
and dx are evaluated at the location of the sextupole S2. The above results are in 
agreement with Table VII of Ref. 1. 
 To illustrate a more complex example, consider the fourth-order aberration 

coefficient ((  |  
 
 
     )) and assume parallel-to—point imaging in the y 

coordinate (i.e., cy(t) = O). The appropriate Green's function is: 
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G3 = sy(t)cy – cy(t)sy = - sy(t)cy 
 
and the coupling coefficient to a fourth-order multipole of strength S4 is: 
 
 (  |  

 
 
     )

   
  = (

  

  
) sy(t)  

 sydx         (28) 

 

where again the aberration coefficient  (  |  
 
 
     ) and sy(t) are evaluated at 

the end of the optical system and cy, sy, and dx are evaluated at the 
location of the fourth-order multipole S4. 
 
 
 
V. A Systematic Procedure for Designing High Resolution Systems First-Order 
Considerations 
 
 In many respects, the determination of a satisfactory first-order magnetic 
optical design is more difficult to achieve than is the subsequent higher-order 
design. This is true not only because the basic equipment configuration is 
dominated by first-order optical considerations but also because the choice of 
the first-order optics affects the magnitude of all higher-order aberrations 
and the ease with which these aberrations may be minimized by introducing 
multipole components into the design. 
 The dominating design parameters that must be clearly specified in order 
to evolve a first-order design are the momentum resolving power; the spatial 
resolution of the particle detector system to be used (this determines the 
momentum dispersion required); the required phase space acceptance (the solid 
angle, the source size, and the momentum range) of the instrument, and the 
first-order imaging requirements in both the x and y coordinates. 
 Given the above specifications (assuming they are self-consistent), the 
optical mode and physical configuration of the instrument may be determined. 
Often, more than one theoretical solution exists; in which case the choice is 
usually resolved by practical or economic considerations. In other cases, 
no solution is evident and the basic specifications must be modified accordingly. 
In any event, the following equations and discussion are applicable to 
the solution of the problem. 
 
l) First-Order Resolving Power 
 A general equation for the first-order resolving power has been derived in 
References (l,2, and 3) . For point-to-point imaging the first-order 
momentum resolving power R1 is defined as the ratio of the momentum dispersion at 
the image plane to the total image size. Thus if 2x0 is the total source 
size then from Reference 1 we have: 
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Note that h(τ )dτ = dα  is the differential angle of bend of the central 
trajectory of the optical system. 
 
 Equation (29) may be expressed in a number of useful forms. If we consider 

a particle originating at the source with xo = 0 and 5 = 0 and δ  = 
  

  
  and lying 

1n the midplane (i.e., a monoenergetic point source), the first—order equation of 
its trajectory is 
     x(τ) = sx(τ)x’0     (30) 
 
We may then rewrite equation (29) as follows: 
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where (    ) is the path length difference between the trajectory ‘described by 
equation (30) and the central trajectory. Or we may also write equatien (31) in 
the form 
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where ∫    is the magnetic flux enclosed between the central trajectory and the 
trajectory described by equation (30), and Bρ  is the magnetic rigidity of the 
central trajectory. Please note, however, that if the trajectory of equation (30) 
crosses the central trajectory or the sign of B changes, this changes the sign of 
the integration. From equation (32) we may define resolving power as the magnetic 
flux enclosed per unit phase space area (2xox’o), per unit momentum (Bρ ) of the 
central ray. 
 In any given design, one or more of the ebove equations may be used as a 
guide toward achieving the required resolving power. One of the design decisions 
that must be made is the appropriate choice of the dipole magnet parameters (width 
and length) to achieve the required ∫   . From first-order considerations, this 
choice is dominated primarily by practical and economic factors. However, a study 
of the nature of the origin of aberrations (see for example Ref. 1) suggests that 
it is advisable to keep the amplitude of sx small. In order to simultaneously 
satisfy this requirement and meet the required resolving power R1, we see from 
equation (29) that the total angle of bend α of the central trajectory should be 
chosen as large as is practical. Also, in general, the focal plane angle tends to 
be more normal to the optic axis for larger α - a property usually desired in most 
designs. 
 
2) Dispersion 
 From Reference 1, 2, or 3; for point-to-point imaging (sx(t)=o) the 
dispersion at the image plane is 
 

  ( )     ( ) ∫   
 

 
( ) ( )           (33) 

 
where cx(t) is the magnification at the image plane. 
 The dispersion and hence the magnification in the design of a spectrometer 
is dominated almost entirely by a compromise between the spatial resolution of the 
particle detectors used at the image plane and the momentum range to be covered by 
the instrument; or in the case of a momentum defining (analyzing) system, by the 
acceptable momentum-defining slit spacings. 
 
3) The Selection of the Optical Mode 
 By optical mode, we mean the type of imaging (e.g., point-to-point 
or parallel-to-point, etc.) required at the image plane in both the x and y 
coordinates, and the number of intermediate images imposed between the source 
and image planes. The imaging requirements at the image plane are usually 
dominated by the physics to be performed by the instrument and the nature of the 
particle detectors used. However often (especially at low energies) the 
imaging in the y plane may be unimportant as far as the physics requirements are 
concerned which in turn provides some additional flexibility in the optics design. 
 A study of the coupling coefficients to the aberration coefficients 
(equation l9) shows the not surprising result, that multipoles located at 
intermediate images in a system do not couple to aberrations in the plane in 
which the intermediate image occurs. Hence it often proves beneficial to 
intentionally create an intermediate image in the y plane of an optical system 
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so as to achieve Some degree of "orthogonality" in the minimizing of x and y 
aberrations . 
 The considerations of l), 2), and 3) above are the determining factors 
in the selection of the first-order solution of a system design. 
 The optical mode and dispersion of the system are determined to a great 
extent by the choice of the quadrupole components chosen to achieve the first 
order imaging although it is clear that the dipole elements also influence the 
first-order imaging to a greater or lesser extent depending upon the total 
angle of bend of the system. 
 
4) Aberrations and their Correction 
 A study of the source of second- and higher—order aberrations (see 
for example Ref. 1) suggests that it is advisable to maintain the characteristic 
first-order functions cx, sx, dx and cy, sy and their derivatives as small as is 
feasible through the magnetic elements of a system when choosing the first 
order design. This procedure will tend to reduce the initial size of the 
aberrations and hence simplify the problem of minimizing them by the addition 
of multipole components to the system design. 
 The procedure for minimizing aberrations has already been outlined in the 
Introduction and as such will not be repeated here. The "key" to the minimization 
procedure is the coupling coefficient given by the integral expression in 
equation (19) . The "best" location for the correcting multipole is where the 
coupling coefficient has its maximum value. 
 The preferred method of introducing the multipole components, i.e., via 
pure multipoles, contoured entrance or exit boundaries, or non-uniform fields 
is a combination of practical and economical considerations and, of course, 
personal taste and experience. All three methods have been used with pure 
multipoles dominating the situation for higher energy physics and the other two 
methods dominating medium and low-energy physics applications. All three 
techniques should be considered in any given design situation to be certain 
that an important economic or practical advantage has not been ignored. 
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 The misalignment of a magnet in a beam line will cause 
an alteration of the beam envelope at any later point in that 
beam line. The position of a misaligned magnet may be described 
in terms of six coordinates, three translational and three 
rotational. The effect of a misalignment on a single particle 
trajectory is derived to first order, including bilinear terms. 
A bilinear effect is one which affects the beam line focusing 
characteristics, but not the central ray, such as the effect of 
rotating a quadrupole about its axis. The effect on the beam 
envelope is calculated, both for a known magnet displacement and 
for an uncertain magnet position. The formalism has been included 
in the computer program 'IRANSPORT.

l
 

 
I. Introduction 
 The effects of magnet misalignments are an important 
consideration at every stage of beam line design, installation, 
and operation. The selection of the optical mode, determination 
of surveying accuracy requirements, and the choice of correcting 
elements are all dependent on misalignment information. 
 Two types of misalignment information are typically needed. 
To assess the general effect of misalignments in the design stage, 
one needs to know the change in beam position and beam line 
transmission characteristics due to uncertainties in the position 
of each magnetic element in each separate coordinate. Secondly, 
to provide for correcting elements, one needs to know the effect 
on the beam of specific misalignments. I 
 In the following we derive a method of determining the 
effect of magnet misalignments on a particle beam. We first 
define a reference system in which to express misalignments. 
Then we determine the effect of a misalignment on individual 
particle trajectories. Finally we express the effect on the beam 
envelope which describes the ensemble of particles comprising the 
beam. 
II. Particle Trajectory Coordinates 
 To specify the position and direction of a particle at any 
instant in time, we employ a coordinate system defined with respect 
to the beam line reference trajectory.

2
 The z axis is taken to 

point along the reference trajectory; the x axis points to the 
left, and the y axis points up. The position and direction of 
the particle trajectory can then be given by a vector with six 
components 
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The quantities x, x’, y, and y’ are respectively the horizontal 
displacement and slope, and vertical displacement and slope of 
the ray with respect to the central reference trajectory. ℓ  is 
the longitudinal separation of the ray from a ray which enters 
the beam line at the same time as the given ray and travels 
along the central trajectory. δ  is the fractional momentum 
deviation of the particle from the design momentum of the beam 
line. 
 When a charged particle passes through a perfectly aligned 
magnet, the transformatiqn may be described to first order by the matrix equation

2
 

 
     X(1) = R X(0)     (2) 
 
The sets of six coordinates X(0) and X(l) give the particle 
position and direction at the entrance and exit faces of the 
magnet respectively. 
When a magnet is misaligned, the central trajectory of the 
magnet is no longer continuous with the central trajectory of 
the beam line (see figure 1 below). In particular, at both 
the entrance and exit faces, the reference coordinate system 
external to the magnet no longer coincides with the reference 
coordinate system internal to the magnet (see figure 2 below). 
The misaligned and aligned reference coordinate systems are 
related by a translation of origin plus a rotation of axes. 
 We continue to use X(O) and X(l) to denote respectively 
the entrance and exit face ray coordinates in the aligned 
coordinate systems. We use a subscript f to denote the ray 
coordinates Xf(O) and Xf(l) expressed in the misaligned 
reference coordinate systems. To first order the ray coordinates 
in the misaligned coordinate systems may be expressed in terms 
of those in the aligned coordinate systems by an affine 
transformation 
   Xf(0) = S0 X(0) – D0      (3) 
 
   Xf(1) = S1 X(1) – D1      (4) 
 
The symbols SO and S1 represent six by six matrices, whose 
form will be derived below. The two six-vectors Do and D1 
are translations in the six dimensional space of particle 
coordinates. The three vectors D0 and D1 formed from the 
displacement coordinates (x, y, and z) of DO and D1 give the 
displacement due to the misalignment of the origins of the 
reference coordinate systems. These two three-vectors are 
shown in figure 1. 
 
III. Magnet Misalignment Coordinates 
The alignment of a rigid magnet has six degrees of freedom, 
three translational and three rotational. These are conveniently 
represented by the six quantities 
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     (5) 

 
where δx, δy, δz are the displacements in the x, y, and z 
directions, and θx, θy, and θz are the rotations about the 
x, y, and z axes respectively. The origin of the xyz coordinate 
system, called the pivot, is the point about which the 
misalignments are measured. If the pivot point is located at 
some point on the reference trajectory, the x, y, and z axes 
of the alignment coordinate system are taken to coincide with 
the x, y, and z axes of the beam line reference coordinate 
system. 
 The misalignments form a mathematical group, which is the 
Euclidean group in three dimensions. This group is non—commutative 
and the order in which the misalignments are imposed is important 
if terms of higher order than linear are included. In practice, 
however, misalignment values are sufficiently small so that a 
first—order approach is justified. For these reasons, we consider 
only those terms which are of first order in the misalignment 
parameters. 
IV. Transformation of Particle Trajectory Coordinates 
 We now temporarily delete the indices 0 and 1 indicating 
the entrance and exit magnet faces respectively, and consider 
the effect of a misalignment at a single magnet face. Later 
we will combine the results from the two faces to obtain the 
net effect of a misalignment. 
 When the components of the misalignment vector m are 
small, we may expand the matrix S and the centroid displacement 
D in the misalignment parameters. Retaining only first-order 
terms we have 
    D = Am 
    S = I + Bm      (6) 
 
The six by six matrix A represents a transformation from the 
misalignment parameters to the particle coordinates. I is the 
identity matrix, and B represents a set of six matrices, one 
for each of the misalignment parameters. A single six by six 
matrix Bm is obtained by multiplying each of the six matrices 
by its corresponding misalignment parameter and summing the 
results. In terms of the misalignment parameters, the particle 
coordinates in the misaligned reference coordinate system now 
take the form 
    Xf = X – Am +BXm    (7) 

 
 To derive the forms of the matrices A and B, we consider 
separately the effect of each of the various misalignment 
parameters on each of the ray coordinates. First we derive 
the effect on the ray coordinates of the various misalignments 
as expressed in the coordinate system of the aligned magnet 
face. Then we will express the misalignment of the magnet 
face in terms of the misalignment parameters about the pivot 
point. 
 A rigid translation of the magnet face will change the 
x, y, and z coordinates of a ray by the amount of the displacement. 
The z translation will also introduce a short drift distance 
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(positive or negative length) at the magnet face, and will 
contribute to B via the transformation matrix of that drift 
space. 
 To determine the effect of a rotational misalignment we 
form from the ray angles x’ ( = dx/dz) and y’ ( = dy/dz) and 
the number 1 ( = dz/dz) , a three—vector (x',y',l) giving the 
ray direction. We let θx , θy, θz be the three rotational components of the 
misalignment vector. Then, including only first-order effects, this three-vector 
is transformed as 
 

(
  
  
 

)  (

      

      

      
)(

  
  
 

)        (8) 

(mancano f in fondo prima parentesi e segni dei vettori su θ ) 

 
In the misaligned coordinate system the ray angles become 
    x’f = x’ – θy + θz y’ 
    y’f = y’ + θx – θz x’    (9) 
    (mancano segni dei vettori su θ ) 

 
Thus coordinate rotations about the aligned magnet face x and 
y axes only shift the ray angles. A rotation about the z axis 
mixes x‘ and y'. 
If we let m represent the misalignment parameters relative 
to the aligned magnet face coordinate system, and A and B 
be the corresponding matrices, then equation (6) holds using the 
barred quantities. Using the results derived above, the matrices 
A and B are now given by 
 
 

   A =

(

  
 

      
      
      
       
      
      )

  
 
     (10) 

 

 B125 = B345 = 1 
 B136 = B246 = - B316 = - B426 = -1      (11) 
(mancano segni dei vettori su B ) 
 
The first two indices for B correspond to the ray coordinates 
and the third corresponds to the misalignment parameters. All 
other elements of B are zero. 
 
 In order to express the quantities m in terms of m, the 
misalignment parameters at the pivot point, we need two items. 
First is the orthogonal matrix 0 giving the three translational 
coordinates at the magnet face in terms of those at the pivot 
point 

     xf = 0xp      (12) 
 
Also needed is the three-vector P which gives the position of 
the origin of the aligned magnet face coordinate system, in 
the coordinate system of the pivot. 
 We now define two three—vectors which give the translational 
mX and rotational mθ parts of the misalignment vector m. We 
also do the same for m. Then the contribution of mx to mx 
is given by equation (11) , so that 
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     mx = 0 mx       (13) 
 
The contribution of mx to mθ  is zero, since parallel translations 
do not affect angles. 
 The displacement of a point due to a rotation about the 
pivot is given by the vector product of the rotation vector and 
the position vector of the point. Therefore the displacements 
of the magnet face mx due to a rotation at the pivot are given 
by 
    mx = 0(         )     (14) 
 
The orthogonal transformation indicated by the matrix 0 gives 
the misalignment parameters in the magnet face coordinate 
system. Finally the transformation of rotational misalignment 
parameters is again given by equation (11) , so that 
 
     mx = 0 mx      (15) 
 
V. Evaluation of the Relevant Matrices 
 We choose the pivot to be the origin of the aligned magnet 
entrance face coordinate system. Therefore we have 

     A0 = A 
     B0 = B      (16) 
 
 For the exit face, the matrix 0 transforms from the 
aligned entrance face coordinate system to the aligned exit 
face coordinate system. The vector P gives the position of 
the origin of the aligned exit face coordinate system in the 
aligned entrance face coordinate system. In figure 1 it is 
the vector which reaches from A to B. 
 For the exit face of a bending magnet we therefore have 

  (
         
   

          
)         (17) 
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)          (18) 

 
where ρ is the radius of curvature of the central trajectory 
and α is the total bend angle. We then derive for the matrices A1 and B1  
 
 

 A1 =

(

 
 
 

               
      
           (      )

              
         (      )      

      )

 
 
 
  (19) 

 
 

B(1)121 = B(1)341 =       
 
B(1)124 = B(1)344 =   (      ) 
 
B(1)125 = B(1)345 =      
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B(1)132 = B(1)242 = -B(1)312 = -B(1)422 =      
 
B(1)136 = B(1)246 = -B(1)316 = -B(1)426 =          (20) 
 
All other elements of B(l) are zero. 
 To calculate Al and B1 for a quadrupole, we take the 
limit α +0 with αρ  = L, the length of the magnet being held 
fixed. Then we have 
 
 

    A1 =

(

  
 

      
      
       
       
      
      )

  
 
     (21) 

        and B1 = B as given above. 
 
VI. Effect on the Beam Envelope 
 To first order, the coordinates at the misaligned magnet 
exit face are related to those at the misaligned entrance face 
by a transfer matrix, so that 
 
    Xf (1) = R X (0)      (22) 
or  
  X(1) – A1m + B1X(1)m = R[X(0) –A0m + B0X(0)m]    (23) 
 
If we solve for X(l) and discard all terms in m of order 
higher than first, we then derive 
 
  X(1) = R X(0) + [A1 – RA0]m +[RB0-B1R] X(0)m    (24) 
 
For later use we define two new matrices F and G given by 
 
     F = A1 – RA0 
 
     G = RB0-B1R      (25) 
so that 
 
    X(1) = RX(0) + Fm +GX(0)m     (26) 
 
An ensemble of particles in a beam line is often 
represented as a six-dimensional ellipsoid. The equation of 
this ellipsoid may be written in matrix form as follows: 
     
    X

T
σ
-1
X = 1        (27) 

 
where X

T
 is the transpose of the coordinate vector X, and σ  

is a real, positive definite, symmetric matrix. The square 
roots of the diagonal terms of the sigma matrix are a measure 
of the beam size in each coordinate. If the centroid of this 
ellipsoid does not fall on the central trajectory, then one 
needs to specify this centroid position also. The sigma matrix 
then gives the beam dimensions as measured about the centroid. 
 The beam envelope entering a misaligned magnet may be 
described in terms of the position in the aligned coordinate 
system of the beam centroid and the sigma matrix. For a known 
misalignment m, the centroid is transformed as in equation (25). 
The sigma matrix is transformed by 
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 σ(1) = Rσ (0)R
T
 + Gσ (0)mR

T
 + Rσ (0)m

T
G
T 
+ Gσ (0)mm

T
G
T
   (28) 

 
where the superscript T indicates a transpose. 
 For an uncertainty in position we define a covariance 
matrix  〈   〉 measuring the distribution of possible magnet 
positions. The sigma matrix, which represents the beam 
envelope entering the magnet may contain contributions from 
both the original beam and from the uncertainty in positions 
of previous magnets. We assume there is no correlation of 
errors of positioning between any two magnets. The beam 
centroid is unaffected by an uncertainty in position. The 
transformed sigma matrix becomes 
  σ(0) = Rρ (0)R

T
 + F 〈   〉F

T
 + Gσ (0) 〈   〉 G

T
   (29) 

 
If the original sigma matrix is zero, then the resultant 
sigma matrix represents the uncertainty in the beam centroid 
upon leaving the magnet. If the original sigma matrix encloses 
a region of _phase space, then the resultant sigma matrix 
represents the envelope of possible particle trajectories, 
including both the undisturbed sigma matrix and the effects of 
the misalignment. 
 
VII .  
 This model for misalignments has been implemented in the 
computer program TRANSPORT

1
.An arbitrary misalignment m may 

be imposed on any magnet or section of the beam line. 
Misalignments may also be nested. The effect of all misalignments 
may then be added into the sigma matrix and thereby be traced 
through the system. Alternatively, the effects of separate 
components of the misalignment vector on individual magnets 
may be stored in a table. This table is traced through the 
beam line and may be compared with the unperturbed sigma 
matrix at any later point. Details of implementation are 
described in the TRANSPORT manual. 
 

Figure Captions 
Figure l 
Perfectly aligned and misaligned bending magnets. 
With the misaligned magnet the beam line reference 
trajectory is no longer continuous with that inside 
the magnet. The displacements of the origins of the 
entrance and exit face reference coordinate systems 
are shown as D0 and D1 respectively. 
 
Figure 2 
Magnet entrance and exit face coordinate systems. 
The misalignment causes both a translation and a 
rotation of the reference coordinate system. 
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FIRST-ORDER PARAMETER OPTIMIZATION AND COVARIANCE 
 

Section V 
 

 To optimize the selected parameters, TRANSPORT uses the method of non 
linear least squares, differential correction, as good description of which is –
found in Ref. (1) below pages, 390-393. A useful by-product of this method ‘is the 
covariance matrix C, printed by the program at the successful conclusion of any 
run involving parameter fitting. In many applications C may be used to estimate 
tolerances on the fitted parameters subject to the specified tolerances (i.e., the 
standard deviations) of the constraints. 
 The covariance matrix C is symmetric. This admits a geometrical 
interpretation as an ellipsoid, and is printed in the same suggestive format as is 
the beam ellipsoid σ, except that in this case the dimension is equal to N, the 
number of parameters varied. The center of the ellipsoid is at 
 

    λ0 = (  
    

     
 ),       (1) 

 
the N values found by TRANSPORT to be the best estimate of the varied parameters. 
The equation of the covariance ellipsoid is 
    (λ – λ

0
) C

-1
 (λ –λ

0
)
T
          (2) 

where (C11)
1/2
 , the first diagonal element printed, measures the maximum extent of 

the ellipsoid along the Al axis (the first varied parameter) in the same sense 
that (σ11)

l/2
 measures the maximum extent of the beam ellipsoid along the x axis. 

The off diagonal elements are normalized so that they are   l in magnitude, in 
analogy with the rij of the beam matrix, and can be interpreted as measures of the 
orientation of the covariance ellipsoid. 
 
(7)  SOLMITZ, Analysis of Experiments in Particle Physics, 
 Ann. Rev. Nuc. Sci., Vol 14, 1964. 
 
 K. Halbach, "A Program for Inversion of System Analysis and its Application 
 to the Design of Magnets", Second International Conference on Magnet 
 Technology, Oxford, 1967. 
 
The best, estimates (or optimized values) of the varied parameters λ are 
precisely those that minimize the quantity: 

    ∑ [
      (     )

   
]
 

 
           (3) 

 
where: 
 M = number of constraints 
  
 fK = a function selected by the code digits (i,j) on the constraint 
 definition (Type Code 10.). For example, I = -l, j = 1 means that the 
 transform matrix element R11 is to be constrained. 
  
  K = EK = the desired value of the selected function. 
 
 SKK = the desired accuracy of fit (i.e., the standard deviation). 
 
In our notation this minimum is expressed by: 
 

    
   ∑ [

     (  
       

 )

   
]
 

 
           (4) 

 

    
  is printed at the successful conclusion of any run involving parameter 

fitting. 
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Whether or not the optimization (    
 , λ

0
) is ‘acceptable’ depends on each 

application and must be evaluated by the user. Values of     
  ~ (M-N) are 

sometimes (but not necessarily) regarded as 'good' . In particular if M-N, then an 

exact; solution,     
  = 0 should be found by TRANSPORT. 

 If the resulting fit is acceptable, then the following interpretation may 
be put on the covariance matrix C: Let the parameters be changed to values λ  near 
the optimum λ

0
 , such that they stay within the ellipsoid defined by: 

 
    (λ – λ

0
) C

-1
 (λ –λ

0
)
T
       

Then the resulting deviation of the specified constrained quantities is 
bounded by: 
 

   ∑ [
     ( )

   
]
 

 
         

         (5) 

 
This interpretation is strictly true if the constrained functions fK are linear in 
the parameters λ . In the non-linear case, it is an approximation valid only in 
some neighborhood of λ

0
. 

are linear in 
 
 Example: 
 On the following page is an example of a TRANSPORT data deck and the 
resulting covariance fit of a first-order run. We have ask for a point-to-point 
image in both the x and y planes by varying the fields of the quadrupole triplet. 
The following definitions and solution are applicable: 
 

B1 = λ1 , B2 = λ2 , B1
0
 = λ1

0
 ,  B2

0
 = λ2

0
 , f1 = R12 , f2 = R34 ,    = 0 ,    = 0 

S11 = 0.005 , S22 = 0.005 and N = 2. 
  
 From the data deck and the TRANSPORT printout* shown on the following 
page, we learn that: 
 
    
 

 
       

 
B1

0 
= -7.4096 Kg,  B2

0
 = 6.1577 Kg 

 

√     = 0.079  
     Coviance matrix information 

r12 = -0.883  √     = 0.038  
 
 The ellipsoid (B - B

o
) C

-1
 (B – B

0
)
T
      can then be constructed as 

shown  

 
 
-------------------------------------- 
*Note: the printout format is: 

    COVARIANCE (FIT     
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  √       

 
 
Example: 
 

 
 
 
 
 
 



- 155 - 
 

 
Interpretation: 
 So long as Bl and B2 fall inside the shaded. area (this is the tolerance 
requirement), then the ellipsoid representing the corresponding deviations of the 
matrix elements R12 and R34 is using Eq. (5): 
 

(
     

     
)
 

 (
     

     
)
 

     
             

 
or 
 

   
     

     (     )2 

 
Note that it is not enough to prescribe tolerances |   |         and |   |      , 
since there is unshaved area inside the rectangle defined by these values. The 
strongly tilted covariance ellipse (i.e., |   |   ) suggests that the triplet 
power supplies should be designed so that any drift in magnetic field B1 causes a 
compensating drift in the magnetic field B2 so as to stay inside the shaded area 
shown in Figure l. 

 

 


