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Sommario

Il lavoro di tesi, svolto nel gruppo V dell’INFN di Bologna, mi ha permesso di iniziare a
conoscere un ambito di ricerca particolarmente attivo a livello internazionale. L’accelerazione
di particelle con l’uso di laser è diventato di notevole interesse grazie al rapidissimo aumento
di potenza che ha caratterizzato lo sviluppo dei laser nell’ultimo decennio.

L’accelerazione di elettroni ha già raggiunto un buon grado di comprensione teorica e
di affidabilità sperimentale, grazie allo studio dei wake-fields. Le energie raggiunte sono
dell’ordine dei GeV con apparecchi di dimensioni table-top e la qualità del fascio è tale che
sono già allo studio sistemi multi-stage per acceleratori di particelle futuri.

Le tecniche di accelerazione laser-plasma sono invece ancora ampiamente sotto indagine
per i protoni e gli ioni in generale. Solo recentemente si stanno iniziando ad avere risultati
interessanti, con pacchetti di protoni di qualche MeV di energia. Grazie allo studio di
nuovi bersagli gassosi, sembra possibile in un prossimo futuro ottenere protoni con energie
dell’ordine del centinaio di MeV, sufficienti per avere interessanti applicazioni soprattutto in
ambito medico con l’adroterapia.

Nel primo capitolo di questa tesi descrivo le principali tecniche di accelerazione di ioni
indagate fino ad oggi e i risultati che stanno mostrando. Quindi, nel secondo capitolo,
analizzo metodi di simulazione computazionale del comportamento di un plasma e di un
fascio accelerato, partendo dallo studio di diversi tipi di integratori numerici delle equazioni
differenziali che caratterizzano la meccanica del sistema, fino a giungere, nel terzo capitolo,
alla modellizzazione degli elementi magnetici di una beamline che ne permetta il trasporto.

L’obiettivo è quello di iniziare la ricerca per l’ottimizzazione dei bersagli del laser, tramite
l’identificazione di parametri minimi da soddisfare, e dei sistemi di trasporto, così che sia
possibile un interfacciamento con apparecchi di post-accelerazione studiati da altri ricercatori
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in contatto col nostro gruppo.

Per raggiungere questo obiettivo ho studiato diverse linee di trasporto, collaborando con
il gruppo del Prof. Ratzinger dell’Università di Francoforte sul Meno (Germania) e con
altri ricercatori del GSI di Darmstadt (Germania). I risultati sono ancora preliminari ma
vengono qui presentati i più interessanti raggiunti durante il periodo di ricerca.

Please download the latest version of this thesis from
http://stefano.sinigardi.it/published/MS_Sinigardi_thesis.pdf

v 3.0

http://stefano.sinigardi.it/published/MS_Sinigardi_thesis.pdf


Introduction

In this thesis I will describe the work that I did with the 5th group of INFN in Bologna.
The research field they’re working on is particularly active in Italy and in many other
countries.

Particle acceleration through laser has become really attractive in the latest years mainly
thanks to the great power enhances that the lasers experienced recently. Electron accelera-
tion with laser is known relatively well: many articles describe the laser wake field and the
ability of electrons to “surf” a magnetic wave to get energy. We already reach GeV energy
with table-top devices and the beam quality is good enough that many multi-stage systems
are under development for future electron accelerators.

On the other hand, laser-plasma acceleration techniques are still under heavy investiga-
tion for protons and ions in general. Only recently we’re starting to get interesting results,
obtaining some bunches with few-MeV protons. Now, thanks to gaseous jet targets, it seems
that in the near future we will be able to get protons with energies in the hundredth of MeV,
enough to have some interesting applications in medical treatments (hadron-therapy)

In this thesis I will describe, in the first chapter, the main techniques known up to
date to accelerate ions with lasers and their results. In the second chapter I will analyse
different kinds of numerical integration techniques through a software that I wrote. Those
integrators are used to integrate the differential equations that describe the plasma motion
and behaviour.

In the third chapter I will study the problems of transport of these bunches obtained from
laser pulses. The goal is to optimize targets, through finding minimal necessary conditions
required on the initial distributions, and to study transport systems required to collect as
many protons as possible and bring them away from the interaction point. For the future,
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we’re also considering matching the laser accelerated protons with a second-stage accelerator
and so we will need to design the best beamline.

To this aim, I studied and simulated with another software many different transport
lines. I went also in Frankfurt am Main to work with Prof. Ratzinger’s group, to check
my software results and to investigate, with other people from GSI (Darmstadt), different
solutions for this problem. In this thesis I will describe the best results that I got during
this research period.
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CHAPTER 1

Laser-Plasma accelerators

1.1 What is a plasma?

A plasma is a ionized gas. We should know about three states of matter: solid, liquid and
gas. When a solid is heated enough, the thermal motion of the atoms breaks the lattice that
builds the crystal and usually a liquid is formed. In the same way, a liquid heated over the
boiling temperature has the property that its atoms vaporize faster than they re-condense.

Similarly, when a gas is heated sufficiently, collisions between atoms make them mislay
their loosely bound electrons. The ions-electron mixture that we get is commonly called a
plasma [1].

1.2 Particle acceleration

Particle acceleration is used as a way to answer profound questions about our universe.
Giant machines accelerate those little fundamental elements of the matter to nearly the speed
of light and then smash them together. In this way, it’s possible to recreate conditions that
existed when our universe was born in the big bang and unleash all the possible particles
and interactions that exist, to understand how they are all connected, described and, maybe,
unified in a single theory.

Unfortunately, to achieve always greater energies, we have to build bigger and more
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2 CHAPTER 1. LASER-PLASMA ACCELERATORS

expensive particle accelerators. The most powerful one at the moment is the LHC, made
by CERN in Geneva1. It has reached every possible limit of what is technologically and
economically feasible. Will advances in the science and engineering of particle accelerators
be continuous so that we can have something else after LHC?

A new approach to particle acceleration, using the plasma state of matter, is showing
considerable promise for realizing a new type of accelerators, dramatically reducing their
size and cost.

This is only one part of the story: particle acceleration is also really important for
material science, structural biology, fusion research, transmutation of nuclear waste and
nuclear medicine, such as treatment of certain types of cancer, among others. Of course, in
these cases, smaller ordinary machines are used now, but they still occupy large laboratory
spaces. Plasma accelerators promise extremely compact devices even in this smaller energy
range [2].

1.2.1 Accelerator basics

Accelerators propel either lighter particles (such as electrons and their antiparticle,
positrons) or also heavier ones (protons, anti-protons and ions).

They can boost particles in a single passage (linear accelerators) or in many orbits (circu-
lar ring accelerators). A big problem of non linear acceleration is a process called synchrotron
radiation. As we will see, linear acceleration (preferably of electrons and positrons) is what
plasma based accelerators are most suited for.

A conventional linear collider accelerates its particles with an electric field that moves
along in synchrony with the particles. A structure called a slow-wave cavity (a metallic
pipe with periodically placed irises) generates the electric field using powerful microwave
radiation. The use of a metallic structure limits how large the accelerating field can be. At
a field of 20-50 MV/m, electrical breakdown occurs — sparks jump and current discharges
from the walls of the cavities.

Because the electric field has to be weaker than the threshold for breakdown, it takes a
longer acceleration path to achieve a specific energy. For example, a TeV beam would require
an accelerator 30 kilometers long. If we could accelerate particles far more quickly than is
allowed by the electrical breakdown limit, the accelerator could be made more compact.
That is where plasma comes in.

1http://lhc.web.cern.ch/lhc/ contains a lot of info about the Large Hadron Collider and its scientific
program.

http://lhc.web.cern.ch/lhc/
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1.3 Lasers

In the last twenty years, the maximum power of the lasers has increased many order of
magnitude, reaching intensities over 1021 W/cm2. The field, at these values, reaches 1012

V/m, so it’s greater than the electric field that binds electrons to the nucleus.

Electrons knocked by these intense electromagnetic pulses oscillate at relativistic speeds,
with pulses up to 10 MeV/c. Radiation pressure made by laser is extreme and easily reaches
terabars: we will describe it in the next chapter 1.5.

When a so strong pulse interacts with matter, it instantly ionizes everything, creating a
plasma.

1.3.1 Chirped Pulse Amplification

The power increased so much in these years thanks to the Chirped Pulse Amplification
(CPA) technique [3]. The fundamental idea is to use three devices: a “stretcher” and a
“compressor”, with an amplification crystal. We use a first pulse, made by a low power laser
(oscillator) which is able to create a really short packet, ∼ 10 fs, then we “stretch” it to
∼ 10 ns. Then the pulse is amplified by the crystal, pumped by another laser, to get an
amplification of 10 order of magnitude (so that we get an energy of a Joule). The pulse is
then “compressed” back to the oscillator length.

The transverse dimensions of these pulses are approximately between some centimeters
up to a meter. The reason is that the great electric fields intensities would ionize the air
and could destroy everything. We have to focus them using a parabolic mirror to get peaks
of 1021 W/cm2 [4].

1.4 Plasma physics

1.4.1 Plasma accelerators

In a plasma accelerator, the role of the accelerating structure is played by the plasma.
Instead of being a problem, electrical breakdown is part of the design because the gas is
already broken down at the beginning. There’s virtually no theoretical limit to the field
that can be produced in a plasma, as long as quantum effects don’t need to be considered.
The power source is not microwave radiation but is either a laser beam or a charged particle
beam.

At first sight, laser beams and charged particle beams do not seem well suited for particle
acceleration. They can have very strong electric fields, but the fields are mostly perpendic-
ular to the direction of propagation. To be effective, the electric field in an accelerator has
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to point in the direction that the particle travels. Such a field is called a longitudinal field.
Fortunately, when a laser or charged particle beam is sent through a plasma, interaction
with the plasma can create a longitudinal electric field.

The process works in this way: a plasma as a whole is electrically neutral, containing
equal amounts of negative charge (electrons) and positive charge (ions). A pulse from an
intense laser or particle beam, however, creates a perturbation of the plasma density. In
essence, the beam, via the so called ponderomotive force (see chapter 1.5), pushes the par-
ticles away from the high intensity regions. Being the ions much heavier than the electrons,
they remain nearly unperturbed and a charge separation is created, accompanied by strong
electrostatic fields. This perturbation induces a plasma wave that travels in the wake-field
at the speed of the group velocity of the pulse itself. Those powerful electric fields, so, will
accelerate any charged particles that come under their influence.

Figure 1.1: The wakefield accelerator [2]

A plasma medium can support accelerating electric fields of fantastic magnitude. A
plasma containing 1018 electrons per cubic centimeter (an unexceptional number) can gen-
erate a wave with a peak electric field of 100 GV/m. That is more than 1000 times greater
than the accelerating gradient in a typical conventional accelerator powered by microwaves.
Now the catch: the wavelength of a plasma wave is only some µm, whereas the typical
microwave wavelength is 10 cm. It is very tricky to place a bunch of electrons in such a
microscopic wave, if we want to inject it. It works better if we try to self-break the wave,
so that electrons come from the plasma itself.

Table-top-plasma accelerators are made possible today by intense, compact lasers. Ti:Sa



1.4. PLASMA PHYSICS 5

lasers that can generate 10 TW of power in ultra-short light pulses now fit on a large tabletop
[5]. In a laser-powered plasma accelerator, for example, an ultra-short laser pulse is focused
into a helium supersonic gas jet that can be some millimeters long. The pulse immediately
strips off the electrons in the gas, producing a plasma. The radiation pressure of the laser
bullet is so great that the much lighter electrons are blown outward in all directions, leaving
behind a positively charged region. These electrons cannot go very far, because the electric
field generated by the charge displacement pulls them back. When they reach the axis
the laser pulse is traveling along, another pulse overshoots them and they end up traveling
outward again, producing a wavelike oscillation [Figure 1.1]. The oscillation is called a laser
wake-field because it trails the laser pulse like the wake produced by a motorboat.

Unfortunately, the accelerated electrons had a very wide range of energies — from 1 to
200 MeV. Many applications require a beam of electrons that are all at the same energy.
This energy spreading occurred because the electrons were trapped by the wake-field wave
at various locations and at different times. In a conventional accelerator, particles to be
accelerated are injected into a single location near the peak of the electric field. Researchers
thought that such precise injection was impossible in a laser wake-field accelerator because
the accelerating structure is microscopic and short-lived.

The accelerated electron bunch can be externally injected, using a conventional acceler-
ator, another laser-plasma stage or “internally” injected. This kind of injection comes from
the so called wavebreaking of the plasma wave generated in the trail of the laser pulse. In
particular conditions, the electron front at the peak density in the wake of the laser pulse
can break like a wave in the sea. When some of the electrons of the wave have a speed higher
than the wave velocity they leave the collective motion and find themselves injected in front
of the wave (a kind of foam, speaking in sea-terms!). An injected electron bunch experiences
the strong accelerating electric field previously described and travels in the wake of the laser
pulse gaining high energies. The most easily obtained wavebreaking comes spontaneously
when the density perturbation is very high.

Many techniques are already used or under development and they ensure a high mono-
chromaticity of the electron bunches generated by a plasma accelerator and a small emit-
tance. These techniques aim to induce the wave breaking in more controlled ways, for
example using a non uniform gas jet (the plasma wave speed depends on the plasma den-
sity), or using a second weak counter-propagating laser which perturbs for a short time the
plasma wave.

This small energy spread and the small emittance of the produced electron bunches,
together with their very short time duration, might allow the development of multi-staged
plasma accelerators in the near future.

The laser-plasma interaction, using different experimental setups, can also be used to
accelerate heavier ions. Unfortunately, many of these techniques require that the injected
protons/ions must be already traveling at nearly the speed of light, so they are not left
behind by the plasma wave. For protons, that means an injection energy of several GeV.
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Other alternatives, described in this thesis, use the strong electric fields that the charge
displacement creates to accelerate ions (protons) up to some MeV. The protons/ions come
from the target itself, often from a hydrogen-rich layer placed above it.

Physicists are making rapid progress in the quest for a plasma accelerator. Although
many of the fundamental physics issues are solved, the making of practical devices still poses
formidable challenges. In particular, beam engineers must achieve adequate beam quality,
efficiency (how much of the driver beam’s energy ends up in the accelerated particles),
and alignment tolerances (the beams must be aligned to sub µm at the collision point).
Finally, the repetition rate of the device (how many pulses can be accelerated each second)
is important.

It took conventional accelerator builders 75 years to reach electron-positron collision
energies in the range of 200 GeV. Plasma accelerators are progressing at a faster rate, and
researchers hope to provide the new technology to go beyond the microwave systems for
high-energy physics in just a decade or two. Much sooner than that, the companion laser
wake-field technology will result in GeV tabletop accelerators for a rich variety of applications
[6].

1.4.2 Characteristics of plasma

Plasma is pervasive in nature: surfaces of stars, interstellar gases, Terrestrial magneto-
sphere, these are all examples of plasmas.

The science of plasma physics was developed both to understand these natural phenom-
ena and to explore the realm of controlled nuclear fusion.

What are the characteristics of plasmas? The important point is that the dynamics of
motion are determined only by forces between near atoms of the material: the range of the
forces in such a configuration is limited.

Let’s start with a system of N charges, which are coupled one to another via their self-
consistent electric and magnetic fields. If we need to consider each and every aspect of those
charges, we would have 6N coupled equations.

Fortunately, a very great simplification is possible if we focus our attention to collision-
less plasma: in this case, we can decompose the electric field in two parts. E1 has a space
variation on a scale thinner than the Debye length, which is the length over which the field of
an individual charge is shielded out by the surrounding particles, and represents the rapidly
fluctuating microfield. E2, on the other hand, represents the field due to deviations from
charge neutrality over space scales greater than the Debye length [7].
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1.4.3 Debye length

Let’s consider a uniform charge distribution, electrons for example, with density n0. In
a neutral plasma, we will have an equal distribution of ions, so that the system is neutral.
Let’s suppose that some electrons get moved so that their density becomes n 6= n0, in a
way that we could write n = n0 + n1. The basic hypothesis that we do is that the new
distribution is in thermal equilibrium at a temperature T . Under these conditions, denoting
the potential generated by the n distribution with V , we have

n = n0 exp(eV/kBT )

where, as obvious, e is the electron charge. Defining with ρ = −en the charge density, we
can write the Poisson potential as

∇2V = −4πρ1 = 4πe n1 = 4πe n0 [exp(eV/kBT )− 1]

letting n1 = n− n0.

Defining

Φ =
eV

kBT

we can write the Poisson potential in this way

∇2Φ = 4πe n0
e

kBT
[exp(Φ)− 1] (1.1)

Introducing the classical electron radius

rc =
e2

mec2

equation 1.1 becomes

∇2Φ =
4πrcn0mec

2

kBT
= λ−2

D [exp(Φ)− 1] (1.2)

where we defined the Debye length as

λ2
D =

1

4πrcn0

kBT

mec2
(1.3)

In a one spatial dimensional world, eq. 1.2 can be integrated. In our 3-dimensional
world, we can only obtain a solution spherically symmetric. Remembering that the radial
part of the Laplacian, in polar coordinates, is written as

∇2 = r−1 ∂
2

∂r2
r
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and assuming r′ = r/λD, eq. 1.2 becomes

d2

dr′2
(rΦ) = r′ [exp(Φ)− 1] (1.4)

For small charge imbalances, Φ� 1, we have

d2

dr′2
(
r′Φ
)
− r′Φ = 0

and its solution is given by

Φ = C
e−r

′

r′
V = Q

e−r/λD

r

in which Q is a constant. Let’s call q(r) the charge within a sphere of radius r and let’s
apply the Gauss theorem to calculate it. We denote with S(r) a sphere of radius r centred
in the origin of the axes and with Σ its surface. Then the charge contained within the sphere
can be expressed by

q(r) =

∫
S(r)

ρ(r′)dr =
1

4π

∫
S(r)

divE dr =
1

4π

∫
Σ(r)

E · r
r
dσ = r2Er(r)

In the case of a shielded potential, we have

Er(r) = −∂V
∂r

= Qe−r/λD
(

1

λDr
+

1

r2

)
We obtain q(0) = Q and so the charge density can be written as a regular part ρreg plus a
singularity that corresponds to the point charge in the origin ρsing = Qδ(r).

ρ(r) = Qδ(r) + ρreg

We now write

q(r) = Q+ qreg(r) qreg(r) =

∫
S(r)

ρreg(r
′)dr

and, analogously,

Er(r) =
Q

r2
+ Ereg(r)

where it’s evident that the regular contribute of the charge density goes to zero when λD →
∞.

So we get
q(0) = Q q(∞) = 0

according to the fact that if we put a charge +Q in 0 we must also distribute an opposite
charge −Q in the whole surrounding space.
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We now note that density ρ(r) is now defined by

ρ(r) = Qδ(r) + ρreg ρreg =
q′(r)

4πr2
= −Qe

−r/λD

4πλDr2

The contribution from the regular part is zero when λD → ∞. In this limit, only the
singularity given by the charge Q in the origin survives.

1.4.4 Plasma waves

When studying laser acceleration, we consider an adimensional parameter given by the
ratio between the rest electron energy and the electromagnetic field energy:

a =
eA

mec2
(1.5)

We can also define a similar ap in which the mass of the electron is replaced with the mass
of the proton.

An electromagnetic wave that propagates into a plasma excites density waves. We can
see that from these equations: 

∂n

∂t
+

∂

∂xi
(vin) = 0

ρ
dvi
dt

= neEi

∂Ei
∂xi

= 4πne

(1.6)

the first one is the continuity equation, the second one follows the conservation of linear
momentum and the third one is the Poisson’s equation; d

dt is the Eulerian derivative, so that

d

dt
=

∂

∂t
+
∑
k

vv
∂

∂xk

Equilibrium requires that n = n0 and v = 0, E = 0. A disturbance in the density, measured
as n1, creates a field E1 and a drift v1 of the charged particles, so that now

n = n0 + n1 E ≡ E1 v ≡ v1

Keeping in mind that ρ = men the equations 1.6 become

∂n1

∂t
+ n0

∂vi
∂xi

= 0

me
dvi
dt

= eEi

∂Ei
∂xi

= 4πn1e

(1.7)
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Deriving the first equation by t and the second by xi, we get

∂2n1

∂t2
= −n0

∂2vi
∂t∂xi

= −n0e

me

∂Ei
∂xi

(1.8)

The third equation of 1.6 becomes

∂2n1

∂t2
+ ω2

pn1 = 0

in which

ω2
p =

4πe2n0

me
(1.9)

is the plasma frequency. Using the classical electron radius

re =
e2

mec2
= 3 · 10−13 cm

then 1.9 can be written as
ω2
p = 4πrec

2n0 (1.10)

1.4.5 Refraction index

In linear approximation (electron density perturbations are small and so plasma oscilla-
tions are harmonics of x2 potential type) we can note that the medium becomes optically
active and its refraction index can be calculated. Let’s consider fields in linear approxima-
tion, too. So these equations are valid:

∇×B =
4π

c
j +

1

c

∂E

∂t

m
∂v

∂t
= eE

j = n0ev

(1.11)

We can choose periodic solutions

B = B∗e
−iωt E = E∗e

−iωt D = D∗e
−iωt v = v∗e

−iωt j = j∗e
−iωt

so that

∇×B∗ =
4π

c

n0e

m

E∗
−iω

+
−iω
c

E∗ = −iωE∗
(

1− 4πe2n0

mω2

)
≡ −iωD∗

The Maxwell equation becomes

∇×B =
1

c

∂D

∂t
D = εE = n2

refrE

in which

nrefr =

(
1−

ω2
p

ω2

) 1
2
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Dispersion relationships

The refraction index is given by the ratio between the group velocity and the vacuum
light speed

nrefr =
vG
c

(1.12)

from which we get, having said ω = ω(k) the dispersion relationship,

vG =
dω

dk
= cnrefr = c

(
1−

ω2
p

ω2

) 1
2

From here we obtain

kc =

∫ ω

ωp

ω′dω′(
ω′2 − ω2

p

) 1
2

=
1

2

∫ ω2

ω2
p

dω′2(
ω′2 − ω2

p

) 1
2

=
(
ω2 − ω2

p

) 1
2 (1.13)

and
k2c2 = ω2 − ω2

p (1.14)

1.4.6 Critical density and skin depth

We note that if ω < ωp, the refraction index and the wave number turn into imaginary.
There is no wave propagation any more, only a vanishing wave exponentially damped. For a
fixed frequency of the electromagnetic wave, the density for which we have ωp = ω is called
critical density nc. For n > nc the plasma becomes opaque: the e.m. fields are dumped on
a characteristic length `s.

The critical density is defined, using 1.10, by

ω2
cr ≡ 4πrec

2ncr (1.15)

so that

ncr =
ω2
cr

4πc2re
(1.16)

Using the known relation

λ =
2π

k
=

2πv

ω
−→ λ2

cr =
4π2c2

ω2
cr

(1.17)

we get

ncr =
π

λ2
crre

=
3.14

3× 10−1310−8λ2[µm]
=

1021

λ2[µm]
cm−3 (1.18)
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If our density is above the critical one, n > ncr, we can define a skin depth as follows:

E = E0e
i(kx−ωt) = e−iωte−x/`s (1.19)

in which `s = i/k.

Following from 1.14 we can write

k =
1

c

(
ω2 − ω2

cr

)1/2
=

i

`s
(1.20)

so that
`s =

ic

(ω2 − ωcr)1/2
=

c

(ωcr − ω2)1/2
(1.21)

Using these results, we can write 1.21 as

`s =
c(

ω2
p − ω2

)1/2 =
c

ω

(
ω2
p

ω2
− 1

)−1/2

=
λ

2π

(
ω2
p

ω2
− 1

)−1/2

(1.22)

Calculating the ratio between ωp and ω using 1.10 and 1.15 we get that ω2
p/ω

2 = ne/ncr

`s =
λ

2π

(
ne
ncr
− 1

)−1/2

If ωp � ω, so that ne � ncr, we have

`s ≈
λ

2π

ncr
ne

=
λω

2πωp
=

c

ωp
(1.23)

1.5 Protons acceleration

Acceleration of particles through laser pulses got a substantial progress in the last years,
thanks to the dramatic increase of power obtained with the CPA (chirped pulse amplifica-
tion). The protons and ions acceleration, after the first studies with the high energy Nd:glass
lasers, has been developed using the low energy (but high power) Ti:Sa lasers [8].

The protons beam quality was initially very poor, but subsequent improvements (micro-
structured targets, energy crossing the 10 MeV line) made possible to propose the use of
laser accelerated protons for therapy, even though many studies are still required before the
laser accelerated proton beams can be delivered to patients [9].

Recently, also CO2 lasers have been used: they have a very long wavelength, native
circular polarization and a relatively good conversion efficiency. The problem with them is
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their long pulse duration mixed with a low power, but both aspects are now finding new
people willing to improve them thanks to recent interesting results [10].

There are two main laser regimes that produce protons acceleration: TNSA (Target
Normal Sheath Acceleration) and RPA (Radiation Pressure Acceleration).

1.5.1 Target Normal Sheath Acceleration

Most of the experiments about laser-plasma ion acceleration exploited this regime, focus-
ing an intense laser pulse on a target with overcritical electron density (i.e. plasma formed
by the ionization of a solid) with a high thickness (` > `s). Many experiments, also, consider
non-normal incidence on the target foil.

The acceleration happens because electrons in the first layers get excited and become
hot for a thickness of a few `s. These electrons have an essentially diffusive motion, both in
the laser direction and in the opposite one.

The electrostatic field created by the charge imbalance accelerates the ions [11]. Being
the diffusion quite isotropic, the accelerating fields experienced by the ions are strongest on
the surfaces of the foil and normal to them, on both sides of the target. We also get a lot
of angular dispersion, with two main peaks on both rear and front direction along the laser
beam. The electrons cloud has a thickness of a few Debye lengths.

Let’s consider a pulse propagating along z axis, polarized along y. Conjugated momenta
are:

Px = px Py = py −
eAy
c

= py −meca Pz = pz

Kinetic energy of an electron is given by:

T = mec
2(γ − 1) = mec

2

[(
1 +

p2

m2
ec

2

)1/2

− 1

]
(1.24)

If A = Ay(z)ey were the vector potential of a fixed external field, then Py would be
conserved exactly and would be zero because before the waves arrives we have Ay = py = 0.
Because of the fluid nature of this problem, we can only say that Py = 0; coupled with
py = meca and pz = p, we can write the 1.24 as

T = mec
2

[(
1 +

p2

m2
ec

2
+ a2

)1/2

− 1

]
(1.25)

If no fields, other than those generated byA, are there, then the longitudinal acceleration
is given by the ponderomotive force. Let’s see how a longitudinal force comes out: starting
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from a quickly oscillating Ay(z), we can write

〈A(z, t)〉 = 0
〈
A2(z, t)

〉
6= 0

Writing the Lagrangian
L =

me

2
v2 +

e

c
vy Ay(z)

we obtain
Px = meẋ Py = meẏ +

e

c
Ay

The Hamiltonian is

H =
1

2me

[
P 2
x +

(
Py −

e

c
Ay

)2
+ P 2

z

]
=

=
1

2me

[
P 2
x + P 2

y + P 2
z − 2

e

c
AyPy +

e2

c2
A2
y

]
(1.26)

ẋ =
Px
me

ẏ =
Py
me
− e

mec
Ay ż =

Pz
me

z̈ = Ṗz = −e
2

c2

∂

∂z

〈
A2
y

〉
(1.27)

The longitudinal motion is collective, while the transverse motion can be considered as
thermal agitation (it will be suppressed in RPA regime as we will see).

Poisson-Boltzmann equation

The main role in the ion acceleration, so, is played by the hot electron component. The
relativistically strong laser pulse transfers its energy and momentum to electrons, that are
accelerated up to an energy of the order of magnitude of the laser ponderomotive potential.

The efficiency, ηe, of the energy conversion from laser to hot electrons should be of the
order of 20%-30%, but no real according exists in literature. After crossing the target, the
electrons distribute themselves over few Debye lengths λe,hot, which for ne,hot = 3 1019 cm−3

and Ee,hot = 6 MeV is λe,hot = 3 µm. But let’s consider this model in detail.

If we have a one dimensional slab along z, extending from z = 0 (the position of the
solid-vacuum interface at the rear side of the target before the arrival of the pulse) up to
x = h (the farther limit of the electron cloud, that will be determined later), we could
assume that the hot electron density follows the Boltzmann distribution

ne(z) = n0 exp

[
eV

kBT

]
(1.28)
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where V = V (z) is the electrostatic potential, n0 is the value of the hot electron density at
V = 0 and T is the constant temperature of the electrons produced by the laser pulse.

This is, of course, a simplification, as it would be better to use a more complicated
electron distribution function [12].

By assuming that, over the electron time scale, the ion distribution remains localized
(immobile ions), the Poisson-Boltzmann equation in the “vacuum” region, that is for z ≥ 0,
reads

d2V

dz2
= 4π e n0 exp(eV/kBT ) (1.29)

A problem arise, because the rhs of 1.28 does not vanish for z → +∞, unless V (+∞)→
−∞. This situation is not acceptable, because any positively charged particle at z = 0
would be accelerated indefinitely in such a potential distribution. We must introduce an
upper boundary h, chosen on the basis of the electron energy conservation [13]: the kinetic
energy acquired by a test electron from the laser pulse should be equal to the work done
from the electron to cover the distance h in the presence of the spatial distribution of the
other fast electrons. It results:

h =

√
γe − 1

πrcnav

in which rc is the usual classical electron radius, γe is the relativistic factor of the test
electron and nav is the average density of hot electrons.

Equation 1.29, coupled with eq. 1.28, is then solved with boundary conditions V (h) = 0
and V ′(h) = 0. These conditions mean that ne(h) = n0 and ne(z > h) = 0, so that there’s
a discontinuity in the electron distribution at z = h. However, due to the other boundary
condition, the corresponding electric field profile is continuous, being zero at z = h.

Defining

Φ =
eV

kBT
ζ =

z

λD
η = h/λD (1.30)

and using kB = 1 going on, the equation 1.29 becomes

d2Φ

dζ2
= eΦ (1.31)

To solve it, we must use, as we previously said, Φ(η) = Φ′(η) = 0. The prime integral of
the motion, noting that the potential is −eΦ and so not forgetting conditions at ζ = η, is

1

2

(
dΦ

dζ

)2

− eΦ = −1

so that
√

2

∫ ζ

η
dζ ′ =

∫ Φ

0

dφ√
eφ − 1

(1.32)
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Using u = eφ we get
√

2(ζ − η) = 2

∫ eφ

1

d
√
u− 1

u

Inserting now w =
√
u− 1

ζ − η√
2

=

∫ √eφ−1

0

dw

1 + w2
= arctan

√
eφ − 1

Φ = log

(
1 + tan2

(
ζ − η√

2

))
Going back to original quantities, using the 1.30 relations, we have

V (z) =
T

e
log

(
1 + tan2

(
h− z
λD
√

2

))

The electric field is

εz = −V ′(z) =
T

e

√
2

λD
tan

h− z
λD
√

2

It’s now easy to get the maximum energy:

Emax = Ze V (0) = ZT log

(
1 + tan2

(
h

λD
√

2

))
(1.33)

Experimental results are different from these calculations: electrons energy depends not
only on laser intensity but also on its energy and duration. Passoni [14] developed a more
realistic model, with cold and hot electron populations, slow heavy ions and fast lighter
ones, to describe metals with a small hydrogen rich surface.

1.5.2 Radiation Pressure Acceleration

Radiation Pressure Acceleration (RPA) is a viable method to obtain ions up to energies
of some GeV/nucleon, and so up to the relativistic domain. It’s an alternative route to the
better understood TNSA regime; it has been developed and stimulated by simulations of
Esirkepov et al. [15, 16], in which they show that at intensities I > 5 × 1021 W/cm2 RPA
starts to dominate over TNSA.

It’s a different mechanism, particularly enlightened with circularly polarized laser pulses:
in such conditions, the acceleration of “fast” electrons at the laser–plasma interface is almost
suppressed, ruling out TNSA which is driven from the space charge produced by energetic
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electrons escaping in vacuum. Electrons heating become negligible: it’s the ponderomotive
force that acts directly accelerating electrons and ions in the RPA regime [17].

A simple minimal model to show the role of the polarization in laser interaction with an
overdense plasma can be described as follows: let’s assume a plane, elliptically (circularly
if ε = 1) polarized wave of frequency ω. It’s incident on an overdense plasma with a
step–like profile of the electron density (ne(x) = n0 θ(x)). We assume ωp > ω, being ωp =√

4πn0e2/me the plasma frequency.

For sufficiently low intensity the vector potential inside the plasma can be written as

A(z, t) =
A(0)√
1 + ε2

e−z/`s (x̂ cosωt+ εŷ sinωt) (1.34)

where `s = c/
√
ω2
p − ω2 (1.22) and ε is the ellipticity (0 < ε < 1).

The longitudinal force on electrons due to the v×B term is then obtained, like in 1.27,
as

Fz = − e2

2mec2
∂zA

2 = F0e
−2z/`s

(
1 +

1− ε2

1 + ε2
cos 2ωt

)
So, from a microscopic point of view, Prad (radiation pressure) is given by the integral

of temporal average of the Lorentz’s law F = J × B over a period of the electromagnetic
field and over the target volume. Since this ponderomotive force (its density is called fp)
scales with the inverse of the particle mass, its effects on ions are negligible. In fact, the
transfer of momentum to ions is actually mediated by the electrostatic field generated by
the displacement of the electrons under the action of fp [18].

If fp and the electrostatic force on electrons coming from unmoved ions balance each
other, so that we can say that the electrons are in a mechanical equilibrium, the total
electrostatic pressure Pes on ions is given by the integral of ZeniEes. If the condition of
quasi-neutrality Zeni = ene holds, then ZeniEes = eneEes = fp, yielding Pes = Prad. In
these conditions one can effectively assume that the target ions are pushed by Prad

We have two models for this regime, depending on the thickness of the target: the Hole
Boring (HB) model, for thicker targets, and the Light Sail (LS) model, for thinner ones.

Hole Boring Regime

The model is best described with the help of the figure 1.2. The first frame (a) cor-
responds to the initial stage in which the electrons have piled up under the action of the
radiation pressure, creating the space-charge field Ex, which balances the ponderomotive
force. We can say that electrons are in equilibrium and ions did not move significantly. So
we can describe Ex and ne with those simple profiles, that approximate the exact profiles
calculated in steady conditions [19].
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Figure 1.2: Profiles of the ion density ni (blue), electron density ne (green) and
electrostatic field Ex (red) at three different stages of ion acceleration [17].

Given the original expression by J. C. Maxwell

Prad = (1 +R)
I

c
(1.35)

the model parameters xd, E0 and np0 shown in 1.2 are related to each other by the Poisson
equation, the law of charge conservation and the equilibrium condition.

Pes =

∫
eneExdx

.
= Prad = 2

I

c

when we assume total reflection (R = 1). The penetration distance of the ponderomotive
force into the target is `s = xs − xd and is of the order of the collisionless skin depth
dp = c/ωp (ωp is the plasma frequency). This simple profile allows us to solve motion
equations analytically: we easily find that all ions in this region get to xs at the same time,
with an energy spectrum that is a flat-top distribution extending from zero to the cut-off
value of

Emax =
mp

2
v2
m = 2mpc

2Π (1.36)

where

vm
c

= 2Π1/2, Π =
v2
m

4c2
, Π =

I

minic3
=

(
Z

A

)
nc
ne

me

mp
a2

0.

(a0 is the dimensionless pulse amplitude corresponding to the field intensity I (for circular
polarization), A is the atomic mass number).

What we observe from simulations is that the fastest ions form a narrow bunch of velocity
vm that penetrated into the overdense plasma. The other ions form another peak moving
with a velocity vb = vm/2. Simply, we can say that vb is the speed at which a hole is bored
into the plasma.
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In [20, 21, 22] they propose a relativistic variant of 1.36. The main point is the use of
momentum conservation in the reference frame that is co-moving with the target surface.
In this reference frame, the intensity is I ′ = I (1− vb/c) / (1 + vb/c) or, using β = vb/c,
I ′ = I(1− β)/(1 + β).

Using this relation, they found this new form of the equation:

Emax = 2mpc
2 Π

1 + 2Π1/2
(1.37)

This means that the transfer of energy from EM wave to the plasma, in the laboratory
frame of reference, occurs because of the frequency redshift of each photon that is reflected
from the moving surface of the plasma. This energy is proportional to the relative shift, and
like the intensity we get ω′/ω = (1− vb/c) / (1 + vb/c).

The scaling of the ion energy with the laser intensity and the target density, which can
be derived from equations 1.36-1.37, is unfavourable if we aim at relativistic energies. For
targets at solid densities, ne > 100nc, values of Π ≈ 1 cannot be approached even at the
highest intensities available for the next years. To obtain Π ≈ 10−1, that means ≈ 100 MeV
per nucleon (useful in hadron-therapy), we must use targets with density of only a few nc.

To produce ions with energy exceeding 102 MeV we must wait for technologies like the
few-cycle pulses at ultrahigh intensity.

Light Sail regime

The model of this regime is based on the concept of a totally reflecting plane mirror
boosted by a light wave. For long enough values of pulse duration τL, such that vbτL > `,
being ` the thickness of the target, the hole boring through the target is “complete” and
all the ions are displaced by the radiation pressure. For a very thin target having ` ≤ `s
(`s is the penetration distance of the ponderomotive force into the target) all the ions are
accelerated as a single bunch. The average motion of the target can be described as that of
a reflecting object boosted by the radiation pressure.

Let’s consider a mirror that is moving along the positive direction of the x axis with
speed u with respect to the lab frame of reference S. We denote with xµ the contravariant
coordinates in S and x′µ those in S′ co-moving with the mirror.

So we can write:

x0 = ct, x1 = x, x2 = y, x3 = z.
∂x′α

∂xβ
= Lαβ
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Our convention is to use a Minkowsky metric like the following:

gαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


We denote with x the vector column made by the xµ and with xµ the covariant compo-

nents. The relation between them is this:

xµ = gµνx
ν xµ = gµνxν gµαgαν = δµν

For the Minkowsky metric tensor we have gµν = gµν . The relativistic invariance x′µx′µ =
xµxµ can be written as

x′µgµνx
′ν = xµgµνx

ν −→ x′ = Lx

x′ · gx′ ≡ Lx · gLx = x · L̃gLx

(L̃ is the transpose) so that the invariance implies L̃gL = g.

Remembering that

β =
u

c
γ =

(
1− β2

)−1/2

we can write the matrix for the Lorentz transformation along the x axis as

L =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


It’s easy to note that

• L̃gL = g

• L̃ = L

• detL = 1

• L−1(β) = L(−β)
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Let’s compose two Lorentz transformations of this type:

L(β1) =


γ1 −β1γ1 0 0
−β1γ1 γ1 0 0

0 0 1 0
0 0 0 1



L(β2) =


γ2 −β2γ2 0 0
−β2γ2 γ2 0 0

0 0 1 0
0 0 0 1



L(β1) · L(β2) =


γ1γ2 + β1β2γ1γ2 −β2γ2γ1 − β1γ1γ2 0 0
−β1γ1γ2 − β2γ1γ2 β1γ1β2γ2 + γ1γ2 0 0

0 0 1 0
0 0 0 1


If we limit ourselves to consider the first matrix block 2× 2, we can rewrite the Lorentz

composition in this way:

L(β1) · L(β2) = γ1γ2

(
1 + β1β2 −β1 − β2

−β1 − β2 1 + β1β2

)

Using

β =
β1 + β2

1 + β1β2
=
u

c

in which
u =

u1 + u2

1 + u1u2/c2

we can rewrite the composition in this really simple way:

L(β) = L(β1) · L(β2) = γ

(
1 −β
−β 1

)
in which γ, thanks to the fact that detL(β) = 1 = detL(β1) · detL(β2), has the usual
definition

γ =
1√

1− β2
=

1 + β1β2

γ1γ2

Let’s write the usual electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez
Ex 0 Bz By
Ey −Bz 0 Bx
Ez By −Bx 0


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As we know, it’s defined so that Fµν = −Fνµ

If we consider the Lorentz transformation of Fµν we find that

F ′µν = Lµα(−β)Lνβ(−β)Fαβ = Lµα(−β)FαβL̃βν(−β)

where we must note that the last term is equal to Lνβ thanks to L properties.

F ′ = L(−β)FL(−β)

F = L−1(−β)F ′L−1(−β) = L(β)F ′L(β)

If we impose that the mirror and the wave move both in the x > 0 verse, such that β is
positive (remember that the motion is only in the x direction), we find that the electromag-
netic field tensor transforms itself in this way:

E′x = Ex
E′y = γ(Ey − βBz)
E′z = γ(Ez + βBy)


B′x = Bx
B′y = γ(By + βEz)

B′z = γ(Bz − βEy)

Analysing a wave linearly polarized that propagates along the x direction we must set
Ex = Ez = 0
Bx = By = 0

Ey = E0e
i(kx−ωt)

Bz = B0e
i(kx−ωt)

Remember the Maxwell’s equation (in the vacuum)

∇ ·E =
ρ

ε0

∇×E = −∂B
∂t

∇ ·B = 0

∇×B =
1

c2

∂E

∂t

n.b.: we could also use the following conventions:
rotE = −1

c

∂B

∂t
−→ ∂Bz

∂t
= −c∂Ey

∂x

rotB =
1

c

∂E

∂t
−→ ∂Ey

∂t
= −c∂Bz

∂x

Substituting the plain wave expression, in which k = ω/c, we find that E0 = B0 and so

Ey = Bz
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The Poynting vector is
E×B = exEyBz = exE

2
y

and it aims to the positive direction of the x axis.

We have found that
E′x = 0
E′y = Ey(1− β)γ

E′z = 0


B′x = 0
B′y = 0

B′z = Ey(1− β)γ

Wave intensity is derived from the modulus of the Poynting vector

I = EyBz = E2
y I ′ = E′yB

′
z = E′2y

so that we can write
I ′ = Iγ2(1− β)2 = I

1− β
1 + β

which is consistent with the fact that wave intensity on the mirror decreases if it’s moving in
the wave direction and verse. I represents the energy flux (in W/m2) of an electromagnetic
field. I divided by the square of the speed of light in free space is the density of the linear
momentum of the electromagnetic field. The time-averaged intensity 〈I〉 divided by the
speed of light in free space is the radiation pressure exerted by an electromagnetic wave on
the surface of a target; the transferred momentum is exactly its double, 2I/c. So we can
write:

dP

dt
= F ′x =

2I ′

c
=

2I

c

1− β
1 + β

in which F ′x is the force per unit of surface.

Denoting with µ the mass per unit of surface, we can write

µ
d

dt

u√
1− u2/c2︸ ︷︷ ︸

acceleration

=
2I

c

1− β
1 + β

if we divide by µ c both sides we get:

d

dt

β√
1− β2

=
2I

µc2

1− β
1 + β

If we use a wave packet instead of a plain wave we must write Ey = Ey(x− ct) =

∫
f(k)eik(x−ct)dk

Bz = Ey
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and we get the very well known equation for the relativistic mirror (or light sail):
dw

dt
=

√
1 + w2 − w√
1 + w2 + w

2

µc
I(x− ct)

dx

dt
= c

w√
1 + w2

Choosing β as the independent value we get
dβ

dt
=

2

µc
I(x− ct) · (1− β)2(1− β2)

1/2

dx

dt
= cβ

The efficiency is measured in the case of a plane wave as a Doppler effect

wout

win
=

(
1− β
1 + β

)1/2

Being ~w the photon energy coming in and out, we finally get

η = 1− Elaser-out

Elaser-in
= 1−

(
1− β
1 + β

)1/2

The mirror problem

The radiation pressure on a thin target in its rest frame, neglecting absorption and at
normal incidence, as we saw, is given by

Pthin = 2Rthin
I

c
(1.38)

where Rthin is the reflectivity of the thin target.

Equation 1.38 is different from the original one for thick target 1.35 because we must
consider now the transmitted wave.

The equation for the mirror is given by:
dβ

dt
=

2I0

µc
f

(
t− x/c
τlaser

− 1

)
1− β
1 + β

(1− β2)
3/2

dx

dt
= cβ

(1.39)

in which µ is the superficial density and f describes the pulse I0 amplitude, in the interval
0 ≤ t− x/c ≤ 2τlaser
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We define the laser energy Elaser in this way, supposing that S is the surface enlightened
by the laser (spatially uniform):

Elaser = I0S

∫ (x/c)+2τlaser

x/c
f(t)dt = I0SτlaserF (1.40)

in which F is the fluence (flux integrated over time):

F =

∫ 1

−1
f(u)du (1.41)

For example, we can see that choosing a pulse like

f(ω) =

{
cos2 π

2
ω |ω| < 1

0 |ω| ≥ 1

we have F = 1.

Let’s enter adimensional variables:

t′ =
t

τlaser
x′ =

x

cτlaser

Using the notation

λ =
τlaser
τ

τ =
µc2

2I0

the equation 1.39 becomes
dβ

dt′
= λf

(
t′ − x′ − 1

) 1− β
1 + β

(1− β2)
3/2

dx′

dt′
= β

(1.42)

We now choose w = t′ − x′ − 1 and we find that f doesn’t change when w is between −1
and 1. So we get: 

dβ

dt′
= λf(w)

1− β
1 + β

(1− β2)
3/2

dw

dt′
= 1− β

(1.43)

We search the prime integral using the following method:

dH = C

[
(1− β)dβ − λf(ω)

1− β
1 + β

(
1− β2

)3/2
dω

]
(1.44)

If we choose
C = (1 + β) (1− β)−1(1− β2

)−3/2 (1.45)
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putting 1.45 in 1.44, ω → ω′ and β → β′, we get

dH = λf(ω′)dω′ − 1 + β′

(1− β′2)3/2
dβ′ (1.46)

Integrating from ω = −1 to ω and from β = 0 to β we get

H = λ

∫ ω

−1
f(ω′)dω′ −

(
1 + β

1− β

)1/2

(1.47)

Note that t = 0 means x = 0 and β = 0. Those become ω = −1 and β = 0 for t′ = 0 in
these gauge reduction, so that H = −1.

If we proceed through the end of the pulse, where ω = 1 and the speed is at its maximum
β∗, we find that

λF −
(

1 + β∗
1− β∗

)1/2

= −1 −→ β∗ =
1 + λF 2 − 1

1 + λF 2 + 1
(1.48)

Let’s define α as

α = λF =
2I0τlaserF

µc2
=

2I0SτlaserF

µSc2
=

2Elaser

Emirror@rest
(1.49)

Putting 1.49 in 1.48 we find

γ∗ − 1 =
α2

2 + 2α
(1.50)

Knowing that the kinetic energy of an ion of atomic mass A is

T = Ampc
2(γ − 1)

we get

Tion = Ampc
2(γ∗ − 1) = Ampc

2 α2

2 + 2α
(1.51)

The kinetic energy of the enlightened mirror surface S, whose rest energy is Emirror@rest =
µSc2, is

Tmirror = Emirror@rest(γ∗ − 1) = Emirror@rest
α

2

α

1 + α
= Elaser

α

1 + α
(1.52)

The result would have been the same using Tmirror = Tion ·Nions, where Nions = µS/(Amp).
The efficiency of this regime is

η =
Tmirror

Elaser
=

α

1 + α
(1.53)
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As we can see, reducing the thickness enhances the efficiency and the ion’s energy in-
creases as α. On the other hand, there’s an upper limit to the thickness of the target, over
that it becomes transparent. The mirror is opaque as long as

a < ζ = π
ne
nc

`

λ

The number of protons (A = 1) that are into a cylinder with a base diameter S is

Nions = neS` =
ne
nc
S`

π

rcλ2
= ζ

S

λrc

To avoid transparency we need that

Nions ≥ N∗ions =
S

λrc
a

The minimum thickness, so, is

`∗ =
N∗ions
neS

=
a

neλrc
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CHAPTER 2

Integrators

We will analyse, in this chapter, the most important methods to solve ordinary differ-
ential equations (ODEs) that describe the evolution of a system. We will limit ourselves to
the 2D case: (x, t).

Euler’s method

If we need to solve a differential equation like ẋ = f(x, t), we can see how, on the right
hand side, we have the definition for each and every point (x, t) ∈ D of the tangent curve
to the solution x(t).

Let’s illustrate it better: we need to fix an arbitrary integration step τ , reasonably
small. After the choice of an initial point (t0, x0) we calculate the approximate solution for
t1 = t0 + τ calculating x(t1) = x(t0) + τf(x0, t0).

At this point, we know the value (t1, x1): we only have to repeat this cycle as long as
it’s needed.

Of course, we do not have to forget that points calculated are only approximated and the
reliability of the method depends on the chosen step and on the error propagation during
the cycle. To evaluate better the error we are making, we can analyse the Taylor series and
estimate the error at each time step:

x(t+ τ) = x(t) + τ ẋ(t) +O(τ2)

29
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Figure 2.1: Euler’s integration method: we approximate the curve with straight
lines, adding a fixed quantity τ to t at each step

Each and every time step we are neglecting a remainder O(τ2).

Note: to use the Taylor expansion, we need that ẋ(t) belongs to C1 class for its argu-
ments, because we’re requiring that x(t) can be derived two times.

But how could I use this value to obtain the global error that I’m doing? It seems that
we do not have any hint on this.

Let’s obtain the effective error done in many steps:

• k-order error [23]:

ek ≤ (∆t)m
M

L

[
eLtk − 1

]
• Symplectic algorithm: no [23].

Let’s design a program1, using Wolfram Mathematica, that generate a numerical solution
to a first order initial value problem of the form

y′ = f(x, y) y(x0) = y0

using Euler’s method.

euler[f_, {x_, x0_, xn_}, {y_, y0_}, steps_] :=
Block [
{
xold = x0,
1http://calculuslab.deltacollege.edu/ODE/7-C-1/7-C-1-b-ma.html
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yold = y0,
sollist = {{x0, y0}},
x,
y,
h

},
h = N[(xn - x0)/steps];
Do
[
xnew = xold + h;
ynew = yold + h*(f /. {x -> xold, y -> yold});
sollist = Append[sollist, {xnew, ynew}];
xold = xnew;
yold = ynew,
{steps}

];
Return[sollist]
]

We can try this simple code launching this command, for example:

soluzione1=euler[x+2y, {x,0,1},{y,0},40]

To enhance the graphical output we can use:

MatrixForm[soluzione1]

to obtain a table (matrix) form that is simpler to read, or:

ListPlot[soluzione1]

to obtain a graph with the points, or:

ListLinePlot[soluzione1]

to get an interpolation of the points and maybe the best possible output.

The parameters are:

• f , for the first order differential equation (in the example the equation is y′ = x+ 2y);

• x0, for the initial x value (x0);
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• y0, for the initial y value (y0);

• xn, for the final x value;

• steps, for the number of subdivisions.

The key algorithm consists in finding new x and y values from the previous ones using

xn+1 = xn + h yn+1 = yn + hf(xn, yn)

In figure 2.2 there’s a visual representation of the results from the example shown above.

Figure 2.2: Euler’s integration method applied to equation y′ = x+ 2y using the
code described in the chapter 2

2.1 Runge Kutta schemes

We have just seen an interesting way of solving differential equations of the type ẋ =
f(x, t) with a second order error:

x(t+ τ) = x(t) + τ ẋ(t) +O(τ2)
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We could try to enhance the precision of the algorithm including third order corrections: for
example

x(t+ τ) = x(t) + τ ẋ(t) +
τ2

2
ẍ+O(τ3)

But, beyond becoming more strict on requests to our function (it must belong to smoother
classes of functions), this method can be really tedious, making everything not feasible. To
improve the precision without making more complex numerical and analytical calculations,
our calculations can use Runge-Kutta methods. The fundamental idea is to calculate the
step between x(t) and x(t+ τ) using the first derivative in a middle point of the interval.

Let’s consider a generic function φ(t). We can see that:

φ(t+ τ) = φ
(
t+

τ

2

)
+
τ

2
φ̇
(
t+

τ

2

)
+

τ2

4 · 2!
φ̈
(
t+

τ

2

)
+O(τ3)

φ(t) = φ
(
t+

τ

2

)
− τ

2
φ̇
(
t+

τ

2

)
+

τ2

4 · 2!
φ̈
(
t+

τ

2

)
+O(τ3)

Subtracting both on the lhs and on the rhs we get

φ(t+ τ)− φ(t) = τ φ̇
(
t+

τ

2

)
+O(τ3)

The error is a third order one, even if the final calculation only uses first derivative. This
happened because subtracting we cancelled the term φ̈. Summing, on the other hand (or
better, on both hand sides!), we get:

φ
(
t+

τ

2

)
=
φ(t) + φ(t+ τ)

2
+O(τ2)

Also in this case the term φ̇ is lost and we get an order of precision in τ .

There exist many Runge-Kutta methods. Let’s look a first one.

Let’s replace x(t) to φ(t) in the subtraction previously done. Remembering that we want
to solve the equation ẋ = f(x, t), we get the solution

x(t+ τ)− x(t) = τf
(
x
(
t+

τ

2

)
, t+ τ/2

)
(2.1)

It’s not useful as a solution because it depends on x(t+ τ/2) which is unknown; we still
can approximate it with the Euler’s method previously seen, so that

x(t+ τ/2) = x(t) +
τ

2
f (x(t), t) +O(τ2)

as can be seen from figure 2.3
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Figure 2.3: The tangent in the intermediate point x′ can be approximated with
the tangent at the point xj−1 + h, calculated with the Euler’s method. This
markedly reduces the error against the shift along the tangent calculated at xj−1.

Thanks to this result, we can write the rhs of the 2.1 as:

f
(
x
(
t+

τ

2

)
, t+

τ

2

)
= f

(
x(t) + τf(x(t), t), t+

τ

2

)
+O(τ2)

Noting that the rhs of the equation 2.1 was multiplied by the factor τ , this approximation
still introduces an error of the τO(τ2) = O(τ3) order.

We got a second order Runge-Kutta scheme, with an error of order τ3.

h =
τ

2
f (xj−1, tj−1)

xj = xj−1 + τf
(
xj−1 + h, t+

τ

2

)
tj = tj−1 + τ

To improve the precision, we can use another method: approximate the derivative in
the middle point x

(
t+ τ

2

)
calculating the mean between the derivatives at points x(t) and

x(t+ τ). The scheme, in this way, becomes:

h1 = τf (xj−1, tj−1)

h2 = τf (xj−1 + h1, tj−1 + τ)

xj = xj−1 +
h1 + h2

2
tj = tj−1 + τ
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Finally, there exist Runge-Kutta algorithms2 much much more complex, that reduce the
error on the single step; here I wrote the description of a pair of them, the most used.

2.1.1 Third order scheme

(error order: τ4)

h1 = τf (xj−1, tj−1)

h2 = τf

(
xj−1 +

h1

2
, tj−1 +

τ

2

)
h3 = τf (xj−1 + h2, tj−1 + τ)

xj = xj−1 +
h1

6
+

2h2

3
+
h3

6
tj = tj−1 + τ

2.1.2 Fourth order scheme

(RK4 - error order: τ5)

h1 = τf (xj−1, tj−1)

h2 = τf

(
xj−1 +

h1

2
, tj−1 +

τ

2

)
h3 = τf

(
xj−1 +

h2

2
, tj−1 +

τ

2

)
h4 = τf (xj−1 + h3, tj−1 + τ)

xj = xj−1 +
h1

6
+
h2

3
+
h3

3
+
h4

6
tj = tj−1 + τ

2.2 Symplectic schemes

A Hamiltonian function H(q, p) defines the dynamics of a 2n-dimensional points system,
of coordinates (q, p) = (q1, . . . , qN , p1, . . . , pN ). Each point of the set (phase space) represents
a possible state of the system.

2W. Press, B. P. Flannery, S. A. Teukolsky e W. T. Vetterling. Numerical Recipes in C: The art of
scientific computing. Cambridge University Press (1992).
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While the system itself evolves from an initial configuration, the states describe in the
phase space a curve with a tangent vector defined at each point as (Hp,−Hq); in fact, as we
know, the Hamilton’s equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p
(2.2)

can be interpreted geometrically as the tangent vector of the evolution curve in the phase
space (as always, q is the position coordinate and p denotes the momentum).

The time evolution of Hamilton’s equations is a symplectomorphism, which means that
it preserves the symplectic two-form dp×dq. Simply said, a numerical scheme is a symplectic
integrator if it preserves this two-form.

In general, a function f in the phase space is symplectic if and only if

f ′(z)TJf ′(z) = J

in which J is defined as follows:

J =

(
0 In
−In 0

)
Most of the usual numerical methods, like the primitive Euler scheme and the Runge-

Kutta scheme, are not symplectic integrators.

How it works: a simple case

Let’s assume that the Hamiltonian is separable, so that

H(p, q) = T (p) + V (q) (2.3)

It’s not so rare that a Hamiltonian system can be expressed in this way, fortunately.
Let’s define z = (q, p) so that

ż = (q̇, ṗ)

Using the formalism DH = { , H} eq. 2.2 can be expressed as

ż = J∇H(z) = DHz = {z,H(z)} =
∂(q, p)

∂q

∂H(q, p)

∂p
− ∂(q, p)

∂p

∂H(q, p)

∂q
=

= (1, 0)
∂H(q, p)

∂p
− (0, 1)

∂H(q, p)

∂q
=

(
∂H(q, p)

∂p
, 0

)
−
(

0,
∂H(q, p)

∂q

)
=

=

(
∂H

∂p
,−∂H

∂q

)
=

(
∂T

∂p
,−∂V

∂q

)
(2.4)
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The formal solution of this set of equations is

z(τ) = exp(τDH)z(0) (2.5)

When the Hamiltonian is in the form like 2.3, 2.5 is equivalent to

z(τ) = exp[τ(DT +DV )]z(0) (2.6)

The symplectic integrator scheme approximates this result 2.6 with the product

exp[τ(DT +DV )] =
k∏
i=1

exp(ciτDT ) exp(diτDV ) +O
(
τk+1

)
(2.7)

in which ci and di are real numbers and k represents the order of the integrator.

Each of the operators exp(ciτDT ) and exp(diτDV ) is symplectic, so their product ap-
pearing in the rhs of the 2.7 is a symplectic map too. From the previous descriptions we can
extract many different integrators at different orders, each with its precise set of coefficients
ci and di.

But let’s see what they give:

exp(ciτDT ) −→
(
q
p

)
7→

(
q′

p′

)
=

(
q + τci

∂T
∂p (p)

p

)
and

exp(diτDV ) −→
(
q
p

)
7→

(
q′

p′

)
=

(
q

p− τdi ∂V∂q (q)

)

An example

If T = p2/2m and V = kq2/2, we have:
∂T

∂p
=

p

m
= p if we put m = 1

∂V

∂q
= kq = F (this is an example of a spring)

So, knowing that at the first order ci = 1 and di = 1, we have
q + ∆t

∂T

∂p
= q + ∆t · p

p−∆t
∂V

∂q
= p+ ∆t · F

For other informations, there exist a lot of articles3. But let’s see an example now.
3For example, D. Donnelly, E. Rogers, Symplectic integrators: an introduction, Am. J. Phys. 73 (2005)

10.
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Equations of motion

Let’s consider a particle that moves in a constant magnetic field B and in an electric
field E that is orthogonal to B. The equations of motion are:

dr

dt
=

p

mγ

dp

dt
= eE +

e

γc
p×B

in which
γ =

(
1 +

p · p
m2c2

)1/2

is the relativistic factor.

If we choose that the z axis is along B and we use the cyclotron frequency

ωc =
eB

mc
(2.8)

the equations become
dr

dt
=

p

mγ

dp

dt
= eE +

ωc
γ
p× ez

Let’s consider a non-relativistic case. Because B = Bzez (we choose z along B), we can
say that E = Exex + Eyey. So the equations can be written by components as follows:

ẋ =
px
m

ẏ =
py
m

ṗx = Fx + ωcpy ṗy = Fy − ωcpx

(we used F = eE).

The Lagrangian is

L = m
ẋ2 + ẏ2

2
− V (x, y) +

mωc
2

(xẏ − yẋ)

The conjugate momenta are

Px = mẋ− mωc
2
y Py = mẋ+

mωc
2
x

The Hamiltonian is

H =
1

2m

[(
Px +

mωcy

2

)2
+
(
Py +

mωcx

2

)2
]

+ V (x, y)

The prime integrals of the motion are H (it doesn’t depend on time) and, if the force
field F is central, so that V = V (r), then L = xPy − yPx is the second one.

H = m
ẋ2 + ẏ2

2
+ V (x, y) (2.9)

L = xPy − yPx = m(xẏ − yẋ) +
mωc

2

(
x2 + y2

)
(2.10)
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2.2.1 First order symplectic integrators

Let’s consider a simple example, with m = 1 and B = 0. So

H = T + V T =
p2

2
V = V (x)

The first order schemes, as we have just seen, can be obtained in this case with splitting
variables:

x(t+ dt) = e∆tDT e∆tDV x(t) +O(∆t2) x =

(
r
p

)
(2.11)

or also
x(t+ dt) = e∆tDV e∆tDTx(t) +O(∆t2) (2.12)

As before, we can easily obtain the maps for 2.11:

e∆tDV −→
{

r′ = r
p′ = p + ∆tF(r)

e∆tDT −→
{

r′′ = r′ + p′∆t
p′′ = p′

(2.13)

Their composition is {
p′′ = p + F(r)∆t
r′′ = r + (p + ∆tF(r))∆t

+O
(
∆t2

)
which can be written as {

pn+1 = pn + F(rn)∆t
rn+1 = rn + pn+1∆t

(2.14)

If we are in 1d, writing F′(rn) = dF(rn)
drn

, it’s easy to see that the determinant of the
matrix that describes this map is 1:

detM = det

(
∂(rn+1,pn+1)

∂(rn,pn)

)
=

= det

( ∂rn+1

∂rn

∂rn+1

∂pn
∂pn+1

∂rn

∂pn+1

∂pn

)
=

= det

(
1 + F ′∆t2 ∆t
F ′∆t 1

)
=

= 1 (2.15)
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For 2.12 the map is {
rn+1 = rn + pn∆t
pn+1 = pn + F(rn+1)∆t

(2.16)

and the whole treatment is the same.

Action as a generator

An equivalent method would have required discretizing the action:

A(qa, qb) =

∫ tb

ta

L(q̇, q, t)dt (2.17)

that is the generator that transforms the system from (qa, pa) to (qb, pb).

So, if we discretize the action and we integrate with a first order method we find the
generator of a canonical transformation that defines a first order integrator. Let’s consider
ta = t, tb = t + ∆t, q(ta) = qn and q(tb) = qn+1. The first derivative of q, q̇ = p, can be
approximated with (qn+1 − qn)/∆t.

In this way, to solve

A(qn, qn+1) =

∫ t+∆t

t
(T (p)− V (q))dt =

∫ t+∆t

t

(
q̇2

2
− V (q)

)
dt = An +O

(
∆t2

)
(2.18)

we can use a first order approximation (rectangular):

An =
(qn+1 − qn)2

2∆t
− V (qn)∆t (2.19)

or

An =
(qn+1 − qn)2

2∆t
− V (qn+1)∆t (2.20)

It’s easy to verify from 2.18 that

pn = − ∂A
∂qn

and pn+1 =
∂A

∂qn+1

and so we find this relations for 2.19:

pn+1 =
∂A

∂qn+1
=
qn+1 − qn

∆t
and pn = − ∂A

∂qn
=
qn+1 − qn

∆t
+
dV (qn)

dqn
∆t (2.21)

{
pn+1 = pn − V ′(qn)∆t
qn+1 = qn + pn+1∆t

(2.22)
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while for 2.20 those are:

pn+1 =
∂A

∂qn+1
=
qn+1 − qn

∆t
− dV (qn+1)

dqn+1
∆t and pn =

∂A

∂qn
=
qn+1 − qn

∆t
(2.23)

{
qn+1 = qn + pn∆t
pn+1 = pn − V ′(qn+1)∆t

(2.24)

Extension to B fields

When there’s a B field the generalization of the previous algorithm is pretty neat at the
first order. The two symplectic integrators 2.14 and 2.16 become{

pn+1 = pn + E(rn)∆t+ ωcpn × ez∆t
rn+1 = rn + pn+1∆t

(2.25)

and {
rn+1 = rn + pn∆t
pn+1 = pn + E(rn+1)∆t+ ωcpn+1 × ez∆t

(2.26)

in which E = E(r) is a central external force.

This second 2.26 integrator, as we can see, is not explicit but it can become so thanks
to the fact that it’s linear in the momentum. They’re not symplectic: to get a symplectic
version we have to start from the action, which now is:

An =
(rn+1 − rn)2

2∆t
− V (rn)∆t+

ωc
2
rn × (rn+1 − rn) · ez (2.27)

or

An =
(rn+1 − rn)2

2∆t
− V (rn+1)∆t+

ωc
2
rn+1 × (rn+1 − rn) · ez (2.28)

The equations that we get from these actions are

Pn+1 =
∂A

∂rn+1
and Pn = − ∂A

∂rn+1
(2.29)

in which P is not the momentum but

P = p +
ωc
2
ez × r (2.30)
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2.2.2 Second order symplectic integrators

x(t+ dt) = e
∆t
2
DV︸ ︷︷ ︸
C

e∆tDT︸ ︷︷ ︸
B

e
∆t
2
DV︸ ︷︷ ︸
A

x(t) +O(∆t3) x =

(
r
p

)
(2.31)

A :

{
r′ = r

p′ = p + ∆t
2 F(r)

A+B :

{
r′′ = r′ + p′∆t = r + ∆t

(
p + ∆t

2 F(r)
)

p′′ = p′ = p + ∆t
2 F(r)

A+B + C :

{
r′′′ = r′′ = r + ∆t

(
p + ∆t

2 F(r)
)

p′′′ = p′′ + ∆t
2 F(r′′) = p + ∆t

2 F(r) + ∆t
2 F

(
r + ∆t

(
p + ∆t

2 F(r)
))
(2.32)

This can be better written as{
rn+1 = rn + pn+1∆t+ F(rn)∆t

2

pn+1 = pn + ∆t
2 F(rn) + ∆t

2 F(rn+1)
(2.33)

Let’s calculate the determinant of the matrix that describes this map:

detM = det

(
∂(rn+1,pn+1)

∂(rn,pn)

)
=

= det

( ∂rn+1

∂rn

∂rn+1

∂pn
∂pn+1

∂rn

∂pn+1

∂pn

)
=

= det

(
1 + F′(rn)∆t2

2 ∆t

F′(rn)∆t
2 + ∆t

2 F′(rn+1)∂rn+1

∂rn
1 + ∆t

2 F′(rn+1)∂rn+1

∂pn

)
=

= det

(
1 + F′(rn)∆t2

2 ∆t
∆t
2

[
F′(rn) + F′(rn+1)∂rn+1

∂rn

]
1 + ∆t

2 F′(rn+1)∂rn+1

∂pn

)
=

= det

(
1 + F′(rn)∆t2

2 ∆t
∆t
2

[
F′(rn) + F′(rn+1)

(
1 + F′(rn)∆t2

2

)]
1 + ∆t2

2 F′(rn+1)

)
=

= 1 + F′(rn)
∆t2

2
+

∆t2

2
F′(rn+1) +

∆t4

4
F′(rn)F′(rn+1) +

− ∆t2

2

[
F′(rn) + F′(rn+1) +

∆t2

2
F′(rn)F′(rn+1)

]
=

= 1 (2.34)
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2.3 Leapfrog integrators

Leapfrog integration is another way to solve ODEs. It is based on calculating positions
and velocities at interleaved time points, in such a way that they leapfrog over each other.

There exist schemes that are accurate at the second order both in space and time and
are computationally light. They are often called staggered leapfrog algorithms.

Figure 2.4: Staggered leapfrog scheme representation. Note that the informa-
tions that come from two previous time steps are used to calculate the next step.
This scheme is second-order both in x and in t.

Using values of un at time tn we can calculate currents (fluxes) Fj,n. Then, we calculate
the new values using the flux at the middle point, using the following algorithm:

uj,n+1 − uj,n−1 = −∆t

∆x
(Fj+1,n − Fj−1,n)

This algorithm requires double the storage: we need to save both un−1 and un to calculate
un+1

2.3.1 Second order scheme (LF2)

This algorithm is not exactly symplectic and it also requires the value p−1/2 that needs
to be calculated with a Taylor expansion.{

p(t+ ∆t/2) = p(t−∆t/2) + ∆tF (r(t)) +O
(
∆t3

)
r(t+ ∆t) = r(t) + p(t+ ∆t/2) +O

(
∆t3

) (2.35)
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which has the following map:{
pn+1/2 = pn−1/2 + ∆tF(rn)

rn+1 = rn + pn+1/2
∆t
2

(2.36)

(as always, for simplicity we keep mmass = qcharge = 1).

For integer time, the momentum is this:

pn =
pn−1/2 + pn+1/2

2
(2.37)

remembering that we’re doing an error of the order O
(
∆t2

)
If we consider a relativistic case, the map is modified as follows:{

pn+1/2 = pn−1/2 + ∆tF(rn)

rn+1 = rn + ∆t
2

pn+1/2

γn+1/2

(2.38)

in which Fn = En + pn
γn
×Bn so that pn+1/2 = pn−1/2 + ∆t

(
En +

pn−1/2+pn+1/2

2γn
×Bn

)
rn+1 = rn + ∆t

2

pn+1/2

γn+1/2

(2.39)

To solve the implicit equation for pn±1/2, instead of using 2.37, we can write pn as a
half-step advancement over pn−1/2, obtaining a new but simpler implicit equation:

pn = pn−1/2 +
∆t

2

(
En +

pn
γn
×Bn

)
(2.40)

Setting:

β = ∆t/2

p∗ = pn−1/2 + βEn (2.41)
b = βBn/γn

equation 2.40 can be rewritten in this way:

pn = p∗ + pn × b (2.42)

or also:

p∗ = pn − pn × b (2.43)
pn × b = pn − p∗ (2.44)
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Multiplying on the right ×b the 2.43

p∗ × b = pn × b− (pn × b)× b (2.45)

Using the vector identity

C× (B×A) = A× (B×C) = B(A ·C)−C(A ·B)

we can rewrite the (pn × b)× b term as

(pn × b)× b = b× (pn × b) = pn(b · b)− b(b · pn) =

= pnb
2 − b(b · pn) (2.46)

If we multiply the 2.43 by ·b on the right we get

p∗ · b = pn · b− (pn × b) · b︸ ︷︷ ︸
it’s 0 by definition

(2.47)

so that
p∗ · b = pn · b (2.48)

Combining 2.46 with 2.48 we get

b× (pn × b) = pnb
2 − b(b · p∗)

pnb
2 = b× (pn × b) + b(b · p∗)

Using 2.44 we get

b2pn = b× (pn − p∗) + b(b · p∗)
b2pn − b× pn = −b× p∗ + b(b · p∗)
b2pn + pn × b = p∗ × b + b(b · p∗)

Applying 2.44 again it becomes

b2pn + pn − p∗ = p∗ × b + b(b · p∗)
pn(b2 + 1) = p∗ + p∗ × b + b(b · p∗)

and finally

pn =
1

b2 + 1
[p∗ + p∗ × b + b(b · p∗)] (2.49)

To solve 2.40 we are more interested in pn × b. So let’s multiply 2.49 ×b:

pn × b =
1

b2 + 1
[p∗ + p∗ × b]× b (2.50)
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Inserting 2.50 in 2.39 gives the final expression for the second order leapfrog algorithm:

pn+1/2 = pn−1/2 + ∆tEn +
1

b2 + 1
(p∗ + p∗ × b)× b (2.51)

Thanks to 2.41,

2p∗ = 2pn−1/2 + ∆tEn −→ pn−1/2 + ∆tEn = 2p∗ − pn−1/2

so that we can write the whole solution in terms of pn−1/2 and p∗, which are known:

pn+1/2 = 2p∗ − pn−1/2 +
1

b2 + 1
(p∗ + p∗ × b)× b (2.52)

Of course, we could have done similar calculations with an inverse leapfrog:{
rn+1/2 = rn−1/2 + ∆tpnγn
pn+1 = pn + ∆tF(rn+1/2)

(2.53)

2.3.2 Fourth order scheme (LF4)

This scheme is composed of three inverse leapfrog maps: given the weight

α =
1

2− 21/3
(2.54)

we define the following algorithm.

First part

∆tx = α∆t ∆tp = α∆t

Map M1 =


rn+α/2 = rn−α/2 + ∆txvn

pn+α = pn + ∆tpF(rn+α/2,vn+α/2, tn + ∆tp/2)

tn,(1) = tn + ∆tp

(2.55)

in which pn+α/2 = (pn + pn+α) /2.
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Second part

∆tx =
1− α

2
∆t ∆tp = (1− 2α)∆t

Map M2 =


rn+1/2 = rn+α/2 + ∆txvn+α

pn+1−α = pn+α + ∆tpF(rn+1/2,vn+1/2, tn,(1) + ∆tp/2)

tn,(1) = tn,(1) + ∆tp

(2.56)

in which pn+1/2 = (pn+1−α + pn+α) /2

Third part

∆tx =
1− α

2
∆t ∆tp = α∆t

Map M3 =


rn+1−α/2 = rn+1/2 + ∆txvn+1−α

pn+1 = pn+1−α + ∆tpF(rn+1−α/2,vn+1−α/2, tn,(2) + ∆tp/2)

tn,(3) = tn,(2) + ∆tp

(2.57)

in which pn+1−α/2 = (pn+1 + pn+1−α) /2

It’s easy to see that
tn,(3) = tn+1 = tn + ∆t (2.58)

and that (
rn+1−α/2
pn+1

)
= M3 ◦M2 ◦M1

(
rn−α/2
pn

)
(2.59)

The step advancement is completed with

rn+1 = rn+1−α/2 +
α∆t

2
vn+1 (2.60)

2.4 PICcol: my code to compare integrators in a PIC envi-
ronment

It’s should be easy to understand that calculating Coulomb interactions between every
particle pair in a plasma can be a really nightmare also for a supercomputer. One simple
approximation that is always used is based on discretization: we can consider the charges as
a source of a field, that we calculate only at some fixed points. Then the particles themselves
interacts with this field and not between them. This is the grid used in a Particle In Cell
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(PIC) software. Also, to reduce the number of the particles but to preserve the other
characteristics, we can use macroparticles, so that each object in the software represents
many elementary protons (or ions), with their mass and charge summed.

Unfortunately, those approximations do not accurately reproduce the microscopic dy-
namics of plasma. But we have to understand that, first of all, we are more interested in the
accuracy of collective plasma phenomena and less in the accuracy of individual particle or-
bits. But do such errors modify the macroscopic behaviour? We could say yes. The primary
source of error can be identified in the limited dimensionality of our simulations: doing a full
3D simulation, even with all those approximations, with a meaningful number of particles
and a reasonable accuracy, is still unfeasible. Doing a 2D simulation, on the other hand,
destroys many plasma properties, such as the value of the charge. There’re some methods to
infer them, but they are subject to other errors and approximations (such as hypothesizing
cylindrical symmetry). Also, there’re usually far too few particles (causing exaggeration of
fluctuations and collisions), there’re serious problems with initial and boundary conditions,
round-off errors and many other difficult to assess in practice [24].

Anyway, I wrote a small PIC code to analyse differences in integrators. The code can
also work without any grid and so in principle it could also verify errors introduced by this
approximation (those graphs are not described in this thesis).

INPUT

At time t = 0 the software needs in input this data:

• Number of particles

• System size

• Number of grid points

• Particles position and velocity

• E and B values on the grid

PROCESSING

• Field values have to be ported from grid to particles

– Ei,j,k → E(xp)

– Bi,j,k → B(xp)

• LEAPFROG
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– pn+1/2 = pn−1/2 + ∆t [En + vn ×Bn]

– xn+1 = xn + ∆t · vn+1/2

– The speed vn = pn/γn can be calculated defining the mean

pn =
(
pn+1/2 + pn−1/2

)
/2

We find ourselves with an implicit equation that can be calculated explicitly with
this method

– pn = pn−1/2 + β [En + (pn/γn)×B]

→ pn = p∗ + pn × b where p∗ = pn−1/2 + βEn and b = βBn/γn

→ pn − pn × b = p∗ we multiply each term on the right with ×b
→ pn × b− (pn × b)× b = p∗ × b
→ pn =

(
1 + b2

)−1
[p∗ + p∗ × b+ b(p∗ · b)]

– pn+1/2 = 2pn − pn−1/2

– xn+1 = xn + ∆t · vn+1/2

• From values xn, xn+1, vn+1/2 summing on each and every species, I have to find the
currents on grid points (Ji,j,k)

• Fields evolution (En, Bn)→
(
En+1, Bn+1

)
– Bn = Bn−1/2 − 1

2∆t∇× En

– Bn+1/2 = Bn − 1
2∆t∇× En

– En+1 = En + ∆t
[
∇×Bn+1/2 − Jn+1/2

]
– Bn+1 = Bn+1/2 −∆t∇× En+1

OUTPUT

As we can see from figures 2.5, 2.6 and 2.7, we can say that a 2nd order leapfrog algorithm
is substantially similar to a symplectic integrator.
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Figure 2.5: Leapfrog 2nd order (red) vs Runge-Kutta 4th order (blue) for prime
integrals, px, py, Py and H − Px.

Figure 2.6: Leapfrog 4th order (red) vs Runge-Kutta 4th order (blue) for prime
integrals, px, py, Py and H − Px.
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Figure 2.7: Leapfrog 2nd order (red) vs symplectic 2nd order (blue) for prime
integrals, px, py, Py and H − Px.
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CHAPTER 3

Protons transport

The main problem studied within this thesis is the transport of the protons obtained
from laser-plasma interactions.

This kind of problem is still an open question within the physics community: it’s really
complex and we’re still trying to understand which devices should be the best for this task.
To make accelerated protons useful, in fact, we need to carry them away from the target
zone: we cannot install a post-acceleration device so close to the interaction point (and also
the bunch would not be good enough at this point) and, for example, we couldn’t even ask
for a patient that requires a proton-therapy to stay within this region with gas jets and
powerful electromagnetic devices.

So, we must be able to transport these bunches for at least a few dozens of centimeters.
What could we use? In this chapter I will describe how we started looking at classical FODO
beamlines (focusing-defocusing quadrupoles) and how we then arrived to the solenoid, based
on the experience that other groups made on this topic.

This study has been done using a code developed and extended by me during the period
of my thesis. It’s able to track particles independently when propagating along a beamline
composed of different magnetic elements. The newest version, written in C++, is parallelized
and uses some strictly defined interfaces to read input and write the simulations to disk, so
that it can work in the environment built with all the other codes of the group.

53
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3.1 Transport of protons coming from TNSA regime

The main characteristic of an optically accelerated beam, in TNSA regime, is its expo-
nential spectrum of energy, with a cutoff Emax(∞) [25]. What it’s really interesting is not
the upper cutoff Emax(∞), but the mean energy. For the injection it’s important that the
beam is almost monochromatic, but at the highest energies the intensities are really low. In
fact

ρ(E) =
dN

dE
=
E0

N0
e−E/E0ϑ (Emax(∞)− E) (3.1)

If we suppose that Emax(∞)� 〈E〉, the upper cut can be ignored and we immediately verify
that the total number of particles is given by

Ntot =

∫ ∞
0

dN

dE
dE = N0

∫ ∞
0

e−udu = N0 (3.2)

Analogously, the total energy is:

Etot =

∫ ∞
0

E
dN

dE
dE = N0 E0

∫ ∞
0

u e−udu = N0 E0 (3.3)

The mean energy can be expressed as:

〈E〉 =
Etot

Ntot
= E0 (3.4)

The number of particles in a small interval [E,E + ∆E] is

N ([E,E + ∆E]) =

∫ E+∆E

E
E
dN

dE
dE = N0

∫ (E+∆E)/E0

E/E0

e−udu ' N0
∆E

E0
e−E/E0 (3.5)

Let’s suppose that we want to select protons with an energy of E = 10 MeV and a spread
of 0.1 MeV, or 1%. Under these conditions the fraction n(E0) = N(E0)/N0 of protons at
different E0 mean energies is

n(2) = 6.7 10−5 n(2.5) = 1.8 10−4 n(3) = 3.6 10−4

n(4) = 8.2 10−4 n(5) = 1.3 10−3

We clearly see that if we start from N0 = 1011 protons we need to have a mean energy
that is between 2.5 and 5 MeV, to have a minimum of 107 injectable protons, keeping under
consideration also the transport beamline and its losses.

There are two main types of target: solid targets and liquid hydrogen. From simulations
[26] it’s clear that the mean energy is greater for liquid hydrogen: the percentage of the laser
energy converted into kinetic energy of protons reaches 10%.
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We can estimate the number of protons that are accelerated knowing their mean energy
and the energy in a laser pulse. For example, at the Dresden-Rossendorf (ZFD) research
centre [27], the laser DRACO has an energy of 3 J and the mean energy of the protons
ejected is 2 MeV: considering previous results, the transferred energy so is approximately
0.3 J and the number of protons that we get is

N0 =
0.1 Elaser

E0
=

0.3 J
2 MeV

=
0.3 J

2× 1.6 10−13 J
∼ 1013

Their data give us this numbers for the accelerated protons distribution:

dN

dE dΩ
= 3 1011 e−E/E0 MeV−1 E0 = 1.7 MeV (3.6)

Unfortunately, they do not describe the angular distribution. If we assume it as uniform
in the forward direction (angle = 2π), we have

N0 = 1.7× 2π × 3 1011 = 3 1012 (3.7)

If we consider a cone obtained with a collimator (iris) with |φ| ≤ 0.1 rad, that corresponds
to an aperture of 2 × 0.1 × 180/π = 0.2 rad ∼ 11◦, the number of protons that we get
according to Eq. 3.7 is N = 1.7 × 0.2 × 3 1011 ∼ 1011. The number of protons with an
energy of 10.0± 0.1 MeV is 2.6 107. We are within the limits, but with a strict margin. We
have to consider that a uniform angular distribution means that only the 3% of the laser
energy is converted, instead of the commonly accepted 10%. So it’s possible that the energy
transfer is less efficient for DRACO, that the spectrum underestimates the real values or
that the energy distribution is not uniform in angle.

3.2 Lilia and Prometheus

Our group works within the Lilia collaboration, aimed to simulate and do feasibility
studies for the Flame laser at LNF (Frascati) [28], studying new gaseous targets and trans-
port lines. We are also doing some feasibility studies for a new facility, Prometheus, based
on a high power laser, aimed to have proton bunches for biomedical studies and applications.
This project is done in collaboration with the ENEA division in Bologna and some other
private funds.

Lilia experiment aims to obtain significant advances in the knowledge of physical phe-
nomena regarding laser-accelerated proton bunches. The objective is to get a beam with
protons of at least 50 MeV of energy and intensity in the order of 1013. To reach this target,
many activities will be done regarding theoretical studies of laser-plasma interactions and
new regimes of accelerations, experimental studies of target configurations, focusing devices
and new kinds of detectors to analyse the beam obtained.
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3.3 My experience at the Goethe University in Frankfurt

To do part of the work I went to the Frankfurt Goethe University. I worked there for
six weeks and my tasks were supposed to be mainly focused on the code check: in Bologna
I worked on developing a new code, Propaga, started by Prof. Servizi, that tracks particles
propagating along a beamline.

Just few days before my departure, with Prof. G. Servizi we developed a tool to animate
simulated particles. It took a couple of days while I was in Frankfurt to make the program
working in a portable way. Previously, films were not reproducible on a machine different
from the original creator and so I was not able to play them remotely.

After having fixed those problems, I went on comparing our results with LORASR and
Trace-3D ones [29, 30]. Those are trusted codes that are used to design cavities and so they
are a great opportunity to find and fix any problem that could arise in our simulations. The
first software, in particular, belongs to the University of Frankfurt.

One way to do these first checks is to compare beam envelopes. Immediately, I discovered
that I couldn’t get those graphs from our simulations, so I wrote a small tool to gather that
data from our output and while I was developing it I also added the possibility to track one
single custom defined particle along the whole beamline.

Using

σx = 〈x2〉 − 〈x〉 〈x〉
σy = 〈y2〉 − 〈y〉 〈y〉
σz = 〈z2〉 − 〈z〉 〈z〉
σpx = 〈p2

x〉 − 〈px〉 〈px〉
σpy = 〈p2

y〉 − 〈py〉 〈py〉
σpz = 〈p2

z〉 − 〈pz〉 〈pz〉
mx = 〈xpx〉 − 〈x〉 〈px〉
my = 〈ypy〉 − 〈y〉 〈py〉
mz = 〈zpz〉 − 〈z〉 〈pz〉

we defined emittances in this way:

εx =
√
σx σpx −m2

x

εy =
√
σy σpy −m2

y (3.8)

εz =
√
σz σpz −m2

z
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3.3.1 BuGe: my bunch generator

In the beginning, when we started the checking of the code, we decided to use a uniform
distribution for the input bunch and not one of the realistic bunches that I had, produced
by ALaDyn. In this way, bunches are better defined and their properties are completely
under our control. But this also means that a bunch generator is needed, and so I wrote
one from scratch recycling some number generator routines from previous works.

This work required a lot of time, because I had to learn particle distributions, in partic-
ular the Kapchinskij-Vladimirskij one.

Kapchinskij-Vladimirskij distribution

In a paper presented in the International Conference on High-Energy Accelerators and
Instrumentation at CERN in 1959, I. M. Kapchinskij and V. V. Vladimirskij discussed the
space charge significance to the beam cross-section in the stationary conditions for a definite
phase volume of injected particles [31, 32].

They made the following assumptions when deducing their phase-space distributions of
particles:

• the beam cross-section is appreciably smaller than the variation period of the focusing
field;

• the particles move only in the linear region of the external field close to the accelerator’s
axis;

• the influence of the space charge is essential only at relatively small velocities, so that
it is assumed that the particle velocity is much below the velocity of light;

• the energy increment in a gap is sufficiently small, so that the period of synchrotron
oscillations is much greater than the acceleration period.

In these assumptions, the equations of transversal oscillations for a particle propagating
into magnetic quadrupole lenses may be expressed in the following form

d2x

dτ2
+Qx(τ) · x+

eλ2

mc2
· ∂UK
∂x

= 0 (3.9)

d2y

dτ2
+Qy(τ) · y +

eλ2

mc2
· ∂UK
∂y

= 0 (3.10)

(3.11)

where z is directed along the axis of the accelerator. The independent variable τ is defined
as

τ =
ct

λ
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and

• e, m are charge and mass of the particle;

• λ is the wavelength of the high frequency accelerating field in free space;

• UK(x, y, z) is the potential of the field of the beam space charge.

• Qx(τ) = Q1(τ) +Q2(τ);

• Qx(τ) = Q1(τ)−Q2(τ);

where the functions Q1(τ) is the defocusing action of the accelerating gaps and Q2(τ) is
determined by the focusing field:

Q1(τ) =
eλ2

2mc2
· ∂Ez(r, z, τ)

∂z

Q2(τ) = λ2 eβ

mc2
·G · g(τ)

g(τ) has the period of the focusing field and changes within the limits |g(τ)| ≤ 1, G is the
magnetic field gradient on the axis in the middle portion of the lens.

The period of the beam cross-section change has the same value order as the period of
the focusing field; since the beam cross-section is substantially smaller than the period of
cross-section changes, the field of the space charge Ek changes much slower along the axis z
than along the axes x and y: ∣∣∣∣∂Ekz∂z

∣∣∣∣� ∣∣∣∣∂Exk∂x

∣∣∣∣ , ∣∣∣∣∂Eyk∂y

∣∣∣∣
Thus

divE ≈ ∂Exk
∂x

+
∂Eyk
∂y

from which
∂2UK
∂x2

+
∂2UK
∂y2

= −4π · ρ(x, y, z) (3.12)

Let’s assume that n(x, y, z, ẋ, ẏ, ż) is the density of particle distribution in the phase
space of coordinates and velocities. According to Liouville’s theorem, the function n remains
constant along the trajectory of the particle motion in the phase space, so that n depends
only on the integrals of motion.

The space charge density in the beam ρ(x, y, z) is determined by the integral

ρ(x, y, z) = e

∫∫∫
n(x, y, z, ẋ, ẏ, ż) dẋdẏdż (3.13)
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The equations 3.9 and 3.10 should be solved jointly with equations 3.12 and 3.13, which
determine the potential of the space charge field UK(x, y, z), provided the phase density of
particles n is a function of the integrals of motion of equations 3.9 and 3.10.

The integration of equations 3.9 and 3.10 will be materially simplified if we introduce
a special assumption regarding the law of particle distribution in the phase space; namely,
if we choose such a dependence of phase density upon the integrals of motion so that they
become linear in the separated variables.

Let’s consider equation 3.9; if it’s linear regarding to the function x(τ), then it’s possible
to choose a pair of complex-conjugated fundamental solutions

χx(τ) = δx(τ) eiψx(τ)

χ∗x(τ) = δx(τ) e−iψx(τ)

which make it possible to express any real solution with arbitrary initial conditions as

x(τ) = Ax · δx(τ) cos [ψx(τ) + θx] (3.14)

The Wronskian of the functions χx and χ∗x, which is defined as

W (f1, f2)(x) = det

∣∣∣∣ f1(x) f2(x)
f ′1(x) f ′2(x)

∣∣∣∣
is a well known constant value. Let’s put

χx
dχ∗x
dτ
− χ∗x

dχx
dτ

= −2i (3.15)

It follows from 3.15 that
dψx
dτ

=
1

δ2
x

The solution of the equation 3.10 has the analogous form

y(τ) = Ay · δy(τ) cos [ψy(τ) + θy]

dψy
dτ

=
1

δ2
y

(3.16)

The values Ax, Ay, θx, θy depend only upon the initial conditions and consequently
are the integrals of motion. The phases of the transversal oscillations of particles θx, θy
are cyclic functions of the initial coordinates and velocities. It’s natural to suppose that
the function of density distribution n depends only upon the integrals of motion Ax, Ay
which are characteristic of the transversal oscillation intensity. The oscillation phases θx, θy
may be of arbitrary value. We shall obtain the expressions for the integrals Ax and Ay by
eliminating from the functions (x(τ), dx/dτ) and (y(τ), dy/dτ) the phases (θx, θy):
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(
δxẋ− δ̇xx

)2
+

(
x

δx

)2

= A2
x(

δyẏ − δ̇yy
)2

+

(
y

δy

)2

= A2
y

Let’s now assume that the particle distribution density in phase space depends upon the
integrals of motion in the following way:

n = n0 δ(F − F0)

where in a general case
F = A2

x + s A2
y

and δ is the usual δ-function. We shall assume further on that s = 1, so we get

F = A2
x +A2

y

Thus, due to the assumption, all the particles in a four-dimensional phase-space x, y, ẋ,
ẏ are situated on the surface of the ellipsoid(

δxẋ− δ̇xx
)2

+

(
x

δx

)2

+
(
δyẏ − δ̇yy

)2
+

(
y

δy

)2

= F

The projections of the representing points on the plane x, ẋ, y, ẏ fill up the corresponding
ellipses (

δxẋ− δ̇xx
)2

+

(
x

δx

)2

= A2
x,max(

δyẏ − δ̇yy
)2

+

(
y

δy

)2

= A2
y,max

Code development

Using some defined conditions upon the KV ellipses (Twiss parameters), I built a re-
ally simple bunch generator that is able to create uniformly distributed bunches in each
dimension (x, y, z, px, py, pz).

x2

R2
+
x′2

θ2
+
y2

R2
+
y′2

θ2
= 1 (3.17)

where θ is the opening angle and R is the maximum beam radius (in x and y).
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Of course, the code implementation differs a little from this equation, mainly because
I accepted not only the real surface of the ellipsoid but a region that is between 0.95 and
1.00. Imposing the equality to 1 would have meant to reject most of the particles generated
by our Monte-Carlo number generator, while accepting a skin larger than 0.05 could cause
bad effects because the projections would have not been uniform again.

With these conditions, the plots of the coordinates of the generated particles became
acceptable. In figures [3.1 and 3.2] there’s an example of a uniformly distributed bunch,
made with these parameters:

• bunch radius: 60 nm

• bunch length: 22 nm

• average energy: ∼ 10.1 MeV

• energy spread: ∼ 6 %
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Figure 3.1: On the left, xy distribution of uniformly generated particles; on the
right, the xz distribution.

3.4 Propaga

3.4.1 Introduction to our code

Our group in Bologna developed a code for particle tracking along a beamline. Its name
is Propaga. It was written quickly, but with the intention to create a good software and not
to replace it very soon.

When I arrived in Frankfurt in June of this year, the status of the code development was
considered good: it was able to track particles along many types of magnetic element, like
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Figure 3.2: On the left, energy distribution of uniformly generated particles; on
the right, transverse momentum (βx and βy)

quadrupoles (focusing and defocusing) and solenoids. It lacked, and still lacks, any kind of
space-charge effects treatment and RF cavities.

To begin the checks of our code, I compared it with some simulations done with ASTRA,
a tool from DESY that I started learning before leaving to Frankfurt [33, 34].

The first test was based on the PHELIX [35] configuration: a really simple beamline with
a solenoid with a length of 72 mm placed 15 mm after the target. Because our solenoid used
an hard edge approximation, we chose a B-field of 17.8 T, a field that should be enough to
focus a bunch with a reference energy of 10.1 MeV ±6% and an opening angle of 90 mrad,
which describes approximately the strength of the real solenoid.

As you can see from the picture 3.3, we were in good agreement when comparing with
ASTRA, used with an input file that asked for an hard edge approximation and that disabled
the space-charge effects: the problem is that none of the two software focused the bunch as
required, even if our approximation were ignoring defocusing effects like space charges: if
wrong, we should have seen more focusing than real, not absence of focus!

So I started analysing deeply how our code works, hoping to find where the problems
were, while also studying the subject to understand why ASTRA is failing too.

3.4.2 Maps of the beamline elements

Our code uses a time integration, not a spatial one like most of other tools do. So it
was a bit difficult to compare nearly all of the literature with our calculations, because of
different approximations and different treatments of the matrices that map each element of
a beamline [36, 37].
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Figure 3.3: bunch envelope for Astra and Propaga

Drift map

The map for a drift tube in our code is really easy: velocities are preserved and no forces
are applied.

dx

dt
= ẋ =

(
1 + p2

x + p2
y + p2

z

)−1/2
px = px/γ

ẏ = py/γ

ż = pz/γ

ṗx = 0

ṗy = 0

ṗz = 0 (3.18)
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Focusing quadrupole

Our focusing quadrupole collapses particle on the x-axis.

dx

dt
= ẋ =

(
1 + p2

x + p2
y + p2

z

)−1/2
px = px/γ

ẏ = py/γ

ż = pz/γ

ṗx =
qB0(−żx)

mpc2

ṗy =
qB0(ży)

mpc2

ṗz =
qB0(ẋx− ẏy)

mpc2
(3.19)

Defocusing quadrupole

On the other hand, our defocusing quadrupole collapses particle on the y-axis.

dx

dt
= ẋ =

(
1 + p2

x + p2
y + p2

z

)−1/2
px = px/γ

ẏ = py/γ

ż = pz/γ

ṗx =
−qB0(−żx)

mpc2

ṗy =
−qB0(ży)

mpc2

ṗz =
−qB0(ẋx− ẏy)

mpc2
(3.20)
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Solenoid map

The solenoid was the only device really tested in Frankfurt. At the beginning, the map
was only the following:

dx

dt
= ẋ =

(
1 + p2

x + p2
y + p2

z

)−1/2
px = px/γ

ẏ = py/γ

ż = pz/γ

ṗx =
qB0

mpc2
· py
γ

ṗy = − qB0

mpc2
· px
γ

ṗz = 0 (3.21)

But, as we said, with such a map we were not able to describe a focusing effect that we
should get with those parameters. After many talks within the group, we found that we
were not considering the fringe fields, that describe the curvature of the field lines at the
beginning and at the end of the solenoid [38] (Figure 3.4).

Figure 3.4: Schematic representation of the focusing effect of a solenoid

As noted during our discussions, not considering them is not a valid approximation, it
means not considering real important physical effects, without them we do not even have
any focusing from the solenoid.

Adding them to our software required that I learned it deeply, because it needed some
corrections and extensions. In literature, fringe fields matrices are always described as an
instant transformation on a space plane and so they do not require any time integration.

But let’s look at a more detailed treatment of the fringing fields.
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Fringe fields of the solenoid

Defining the potential vector B = ∇×A, owing to the fact that B is defined as constant
in the solenoid, we have: ∮

A · dl =

∫
B0 · dΣ

A 2πr = B0 πr
2

A =
B0 · r

2
(3.22)

Starting from the relativistic Lagrangian

L = −m0c
2
√

1− β2 − eA · v

the canonical momenta in the transverse plane are defined by

px =
∂L
∂ẋ

= γm0vx + eAx

py =
∂L
∂ẏ

= γm0vy + eAy (3.23)

As we know, any magnetic field will not give energy to our particles. So we have to
consider angular momentum and energy conservation; owing to the cylindrical symmetry we
can write

1

2
mv2

φ +
1

2
mv2

r +
1

2
mv2

z = const.

for the energy and
r× p = r · pφ = const.

for the angular momentum. This because

dL

dt
= Mtot

where L is the angular momentum and Mtot the momentum of the external forces:

Mtot = r× Ftot

Because of the fact that the magnetic force is a centripetal force, we have r//F and so
Mtot = 0, that means

dL

dt
= 0
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So let’s consider angular momentum conservation: outside (out) the solenoid Aφ,out = 0,
inside (in) Aφ,in 6= 0

r · pφ = const.
mvφ,out = mvφ,in + qAφ,in =

= mvφ,in +
qB0 · r

2

mvφ,in = mvφ,out −
qB0 · r

2

vφ,in = vφ,out −
qB0 · r

2m
(3.24)

The transformations between the references system are done in this way:{
vx = −vφ · sinφ
vy = vφ · cosφ

and so vx,in = −vφ,in · sinφ =
(
vφ,out − qB0·r

2m

)
· sinφ = −vφ,out sinφ+ qB0·r

2m
y
r

vy,in = vφ,in · cosφ =
(
vφ,out − qB0·r

2m

)
· cosφ = vφ,out sinφ− qB0·r

2m
x
r{

vx,in = vx,out + qB0y
2m

vy,in = vy,out − qB0x
2m

If we now consider the kinetic energy conservation we find also the relation between the
vz,in and the vz,out:

1

2
mv2

x,out +
1

2
mv2

y,out +
1

2
mv2

z,out =

=
1

2
mv2

x,in +
1

2
mv2

y,in +
1

2
mv2

z,in (3.25)

so that
vz,in =

√
v2
x,out + v2

y,out + v2
z,out − v2

x,in − v2
y,in

Here’s the map: 
x1

y1

vx,1
vy,1

 =


1 0 0 0
0 1 0 0

0 qB0

2m 1 0

− qB0

2m 0 0 1

 ·


x0

y0

vx,0
vy,0


while the map for the z was omitted because it’s non-linear.
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When the particle is coming out from the solenoid this is the map for the fringing field:
x2

y2

vx,2
vy,2

 =


1 0 0 0
0 1 0 0

0 − qB0

2m 1 0
qB0

2m 0 0 1

 ·


x1

y1

vx,1
vy,1



3.5 Our simulations

In this paragraph I’ll recap all the simulations that we have done for this transport
problem.

3.5.1 Bunches from PIC simulations

First of all, we started using bunches obtained by Carlo Benedetti using ALaDyn code
[39]. Those are realistic bunches, and because of this fact they were really hard to use when
cross-checking results with other software (there’s no way to understand at first sight some
effects).

bunch3D v1

This is the original bunch. In fig. 3.5 there’re the position distribution in x and y
and in x and z, while in fig. 3.6 there’re the energy distribution, obtained via βz (in our
code, the momenta are pure numbers, because they are divided by mpc), and the transverse
momentum distribution, βx vs βy.
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Figure 3.5: bunch #1 particle distribution in xy (left) and xz (right)
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Figure 3.6: bunch #1 energy distribution (βz) (left) and transverse momentum
distribution (βx vs βy) (right)

bunch3D v2

This is the same bunch as before, but with some cuts applied, to make it more useful for
our analysis. In figure 3.8 there’re the energy distribution, obtained via βz, and the trans-
verse momentum distribution of the particles; in fig. 3.7 there’re the position distribution
in xy and xz.
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Figure 3.7: bunch #2 particle distribution in xy and xz

3.5.2 The typical beamlines analysed

FODO

First of all, our analysis was done on a classical quadrupole beamline, with a focusing
quadrupole coupled with a defocusing one.
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Characteristics of the beamline:

• focusing quadrupole length: 10 cm

• focusing quadrupole field gradient: 30 T/m

• defocusing quadrupole length: 10 cm

• defocusing quadrupole field gradient: 30 T/m

Results were not really very promising, because this beamline required very high gradi-
ents to keep emittance under control. As we can see from literature, in fact, quadrupoles
with a so high gradient are still under investigations [40].

I+FODO+I

The analysis proceeded inserting two irises, at the beginning and at the end of the
beamline, to further reduce the emittance. Unfortunately, with this choice, really very few
protons survived!

Characteristics of the beamline:

• first iris radius: 0.5 mm

• second iris radius: 0.5 mm

Solenoid

Starting from my experience in Frankfurt, we began considering solenoids as effective
focusing elements. We started with a really simple hard edge model of the solenoid, like
those used for quadrupoles.

First of all we started with a configuration like Fig. 3.9. We immediately dropped both
irises, because the losses were exaggerate.

After these simulations, we changed our transport beamline, simplifying with only an
iris at the beginning and implementing more realistic models for the solenoid.

Characteristics of the beamline:

• initial drift of 1 cm

• solenoid length: 20 cm

• solenoid B-field: 30 T
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Figure 3.8: bunch #2 energy distribution (βz) (left) and transverse momentum
distribution (βx vs βy) (right)

Figure 3.9: Transport system model, as studied in this thesis.
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I+Solenoid

As just said, we tried also to further reduce emittances with an iris at the beginning of
the solenoid.

Characteristics of the beamline:

• iris radius: 0.5 mm

Solenoid with fringing fields - Phelix beamline configuration

Describing the solenoids in a more realistic way was a key to the latest simulations. In
Frankfurt I cross-checked our code with the kick-model at the beginning and at the end of
the solenoid, using the parameters of the Phelix beamline from GSI.

• initial drift of 15 mm

• solenoid length: 72 mm

• solenoid B-field: 17.8 T (hard edge with kick model for fringing fields)

3.5.3 Status of the code at the end of the Frankfurt period

At the end of my period spent in Frankfurt dealing with those problem, our code dealt
better with solenoids and passed checks against LORASR and Trace-3D codes. In the figure
[3.10] I made a comparison between LORASR and PROPAGA and everything was really
better. Also, we did some benchmarks with a custom-made bunch, with a 5 mm radius
made of particles without transversal momentum, to see the differences between an hard
edge model with and without the fringing fields treatment. As we can see from figure
[3.11], the solenoid model without fringe fields is unable to focus this kind of bunches, while
experimentally they’re focused. It’s a clear demonstration about the importance of these
corrections in the simulations.

3.5.4 Simulations with K-V bunches

To better compare our code with ASTRA, LORASR and Trace 3-D, I also analysed many
times my transport code with many different K-V distributed bunch and different beamlines.
We can see some graphs in fig. 3.12, in which we can see how the bunch envelope is different
for the same bunch when it’s propagating into a beamline composed of only a solenoid at
different B-field configurations.
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3.5.5 The hard edge approximation removed

Back in Italy, I worked on a much more realistic description of the field, to remove the
hard edge approximation. Using a function designed to make a smoother Heaviside theta,

f(z, z0, λ) =
1(

1 + e−(z−z0)/λ
) (3.26)

which then gives a smoother delta:

f ′(z, z0, λ) =
1

λ

e−(z−z0)/λ(
1 + e−(z−z0)/λ

)2 (3.27)

we can now design a curve for the B-field that does not have any discontinuity. We can
write the B field in this way:

B =

 Bρ
Bφ
Bz

 (3.28)

so that the smoothed Bz is:

Bz = B0 (f(z, 0, λ)− f(z, Ls, λ)) (3.29)

From the divergence operator rewritten in cylindrical coordinates we get that

∇ ·B =
1

ρ
∂ρ (ρBρ) +

1

ρ
∂φ (Bφ) + ∂zBz = 0 (3.30)

so that we can write, after having imposed Bφ = 0, a Bρ like this:

Bρ = −1

2
B0ρ

(
f ′(z, 0, λ)− f ′(z, Ls, λ)

)
(3.31)

so that
Bx = −1

2
B0x

(
f ′(z, 0, λ)− f ′(z, Ls, λ)

)
(3.32)

By = −1

2
B0y

(
f ′(z, 0, λ)− f ′(z, Ls, λ)

)
(3.33)

Doing the maths we get

F = q


Bzvy +

1

2
vzBy

−Bzvx −
1

2
vzBx

1

2
Bxvy −

1

2
Byvx

 (3.34)
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Figure 3.13: B field comparison: the hard edge model and the smooth one.

As we can see from the calculations above, dealing with a smooth B field brought also
a realistic treatment of the fringing fields.

In figure 3.13 there are plotted the hard edge model of the Phelix B field and the more
realistic one, which can be described analytically using the previous method.

In fig. 3.14 we can see the emittances along different beamlines for the transport of
the bunch3D v2 obtained by Carlo Benedetti using the ALaDyn code to obtain a realistic
bunch.

3.5.6 Future work

Propaga still lacks any proper treatment of space-charge effects and more realistic B-
field treatment in all the elements except for the solenoid. Those will be the next tasks
that will be done in the coming months. Analysing a recent article coming from a PHELIX
Collaboration [41], they simulate both charged populations and their interactions. Due
to their much lower energies, electrons that are co-moving with protons (have the same
velocity as protons) get forced down to the solenoid axis directly at the target position, as
can be seen from fig. 3.15 (the magnetic field at the target position is just about 0.95 T,
enough to focus slow electrons). This effect has strong influence on proton propagation. The
normally existing quasi neutrality of the beam is not preserved, there’s a meaningful charge
distribution. Hence, the protons get attracted by the negative space-charge of the electron
beam, leading to a better focusing of the protons around the solenoid axis. This is a new
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Figure 3.14: emittance for the bunch3D v2 made by Carlo Benedetti

and interesting effect that we did not even consider at the beginning of the work.

During my period of time spent at the Goethe University, I attended many really talks;
in one of those, Prof. I. J. Petzenhauser from GSI talked about the magnetic horn as a
device studied in recent years, useful to focus problematic bunches. But, as he said, works
are done mainly on really high-energy particles [42] and so if we want to investigate it we
would have to start from the beginning.

Leaving aside Propaga, also my bunch generator is still not checked when producing
Gaussian bunches. I will need to check how it deals with them and maybe then we will use
it for some new tests on Propaga. I found some people interested in it in Frankfurt, too.

Lastly, Propaga does not describe any type of post-acceleration, but we will need some
code dealing with this problem to further analyse our desired beamline.
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Figure 3.15: Electron (blue) and proton (cyan to red) flux through the solenoid.
The beam has entered the solenoid from the left side of the picture. The electrons
are circulating around the axis of the solenoid, leading to a strong negative space
charge that results in a proton beam focusing and aggregation around the axis too
[41].



Conclusion

In this thesis I described the work I did in the past year in the framework of the activities
of the Lilia-INFN experiment at Bologna.

At the moment, here the main research field is the study of laser acceleration of protons.
While electron acceleration is known relatively well, protons dynamic treatment, on the
other hand, is still under investigation not only here but also in many other theoretical
groups.

Significant experimental results were obtained only in last years, due to the dramatic
improvements in laser power obtained with the chirped pulse amplification technique. Now,
thanks also to the new kinds of targets, it seems that in the near future we will be ca-
pable of obtaining protons with energies above one hundred of MeV, sufficient for medical
applications, such as hadron therapy.

In view of these future possibilities, the group is actively working to simulate the be-
haviour of innovative new targets, such as gaseous jet targets, and transport systems. The
present work is also focused on the feasibility study of the Prometheus project that aims to
create a laser based laboratory for the acceleration of protons for biomedical applications in
collaboration with ENEA division of Bologna.

In the first chapter of this thesis I analysed the main features of laser-plasma acceleration
and the two main laser-proton acceleration regimes. For both of them I described their
distinctive features and the energies achievable with current technology. These regimes are
studied and simulated here in Bologna with ALaDyn, a particle-in-cell code developed by the
Bologna’s group itself. My contribution to ALaDyn was the development of algorithms and
associated code to integrate the particle equations of motions using leapfrog and symplectic
methods.
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In the third chapter I described the main work of my thesis: I studied the problems
of transport of the protons bunches, obtained from laser-plasma interactions. The main
concern was to limit the growth of emittance with suitable arrangement of focusing devices.
This is a key point to couple these bunches with a post-acceleration devices which might be
used for cancer treatment.

The first studies on transport system concerned a FODO beamline (focusing-defocusing
coupled quadrupoles). To improve my knowledge on this topic I spent a period of two months
at the Goethe University in Frankfurt am Main where I collaborated with Prof. Ratzinger’s
group. Their main activity is the design of new cavities for post-acceleration. There I learnt
the importance of solenoids as focusing devices in a beamline; the model we had initially
considered did not include the fringing fields of the solenoid itself. After inserting them, a
good agreement with results obtained by the Frankfurt group were obtained.

I also wrote a bunch generator, to simulate a K-V beam, whose propagation was used to
match with their results. Other simulations were based on bunches obtained from the PIC
code ALaDyn.

The results presented here are preliminary even though they show that a laser accelerated
bunch can be transported with a controlled emittance growth. For the future, we plan to
insert the space charge forces and to add the electronic population in our simulations which
has a focusing effect on protons. A crucial point will be the consideration of different types
of targets which allow to obtain a better bunch for transport.

Stefano Sinigardi
stefano.sinigardi@gmail.com



Bibliography

[1] R.J. Goldston and P.H. Rutherford. Introduction to Plasma Physics. Introduction to
Plasma Physics. Taylor & Francis, 2010.

[2] C. Joshi. Plasma Accelerators. Scientific American, 294(2):020000–47, February 2006.

[3] Gerard A. Mourou, Toshiki Tajima, and Sergei V. Bulanov. Optics in the relativistic
regime. Rev. Mod. Phys., 78:309–371, Apr 2006.

[4] A. Sgattoni. Equazioni di Maxwell-Liouville ed accelerazione di cariche tramite un
impulso elettromagnetico. Master’s thesis, University of Bologna, 2005–2006.

[5] Gérard A. Mourou and Donald Umstadter. Extreme light. Scientific American, page 81,
May 2002.

[6] W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes,
E. Esarey, C. B. Schroeder, and S. M. Hooker. GeV electron beams from a centimetre-
scale accelerator. Nature Physics, 2:696–699, October 2006.

[7] W.L. Kruer. The Physics of Laser Plasma Interactions. Frontiers in physics. Westview
Press, 2003.

[8] G. Turchetti, A. Sgattoni, C. Benedetti, P. Londrillo, and L. Di Lucchio. Comparison of
scaling laws with {PIC} simulations for proton acceleration with long wavelength pulses.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 620(1):51 – 55, 2010. COULOMB09
Ions Acceleration with high Power Lasers: Physics and Applications.

[9] Andrea Macchi, Silvia Veghini, and Francesco Pegoraro. “Light Sail” acceleration reex-
amined. Phys. Rev. Lett., 103:085003, Aug 2009.

81



82 BIBLIOGRAPHY

[10] C. A. J. Palmer, N. P. Dover, I. Pogorelsky, M. Babzien, G. I. Dudnikova, M. Ispiriyan,
M. N. Polyanskiy, J. Schreiber, P. Shkolnikov, V. Yakimenko, and Z. Najmudin. Mo-
noenergetic Proton Beams Accelerated by a Radiation Pressure Driven Shock. Physical
Review Letters, 106(1):014801, January 2011.

[11] Andrea Macchi, Federica Cattani, Tatiana V. Liseykina, and Fulvio Cornolti. Laser
acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett.,
94:165003, Apr 2005.

[12] M. Passoni and M. Lontano. One-dimensional model of the electrostatic ion acceleration
in the ultraintense laser-solid interaction. Laser and Particle Beams, 22(02):163–169,
2004.

[13] V. T. Tikhonchuk. Interaction of a beam of fast electrons with solids. Physics of
Plasmas (1994-present), 9(4):1416–1421, 2002.

[14] Alessandro Zani, Andrea Sgattoni, and Matteo Passoni. Parametric investigations
of target normal sheath acceleration experiments. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 653(1):94 – 97, 2011. Superstrong 2010.

[15] T. Esirkepov, M. Yamagiwa, and T. Tajima. Laser ion-acceleration scaling laws seen
in multiparametric particle-in-cell simulations. Phys. Rev. Lett., 96:105001, Mar 2006.

[16] T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima. Highly efficient
relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett., 92:175003, Apr
2004.

[17] Andrea Macchi, Tatiana V. Liseikina, Sara Tuveri, and Silvia Veghini. Theory and
simulation of ion acceleration with circularly polarized laser pulses. Comptes Rendus
Physique, 10(2–3):207 – 215, 2009. Laser acceleration of particles in plasma - Accéléra-
tion laser de particules dans les plasmas.

[18] Andrea Macchi and Carlo Benedetti. Ion acceleration by radiation pressure in thin
and thick targets. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 620(1):41 – 45, 2010.
Coulomb’09 - Ions Acceleration with high Power Lasers: Physics and Applications.

[19] F. Cattani, A. Kim, D. Anderson, and M. Lisak. Threshold of induced transparency in
the relativistic interaction of an electromagnetic wave with overdense plasmas. Phys.
Rev. E, 62:1234–1237, Jul 2000.

[20] A P L Robinson, P Gibbon, M Zepf, S Kar, R G Evans, and C Bellei. Relativistically
correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma
Physics and Controlled Fusion, 51(2):024004, 2009.



BIBLIOGRAPHY 83

[21] A P L Robinson, M Zepf, S Kar, R G Evans, and C Bellei. Radiation pressure ac-
celeration of thin foils with circularly polarized laser pulses. New Journal of Physics,
10(1):013021, 2008.

[22] T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou.
Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using
ultraintense laser pulses. Physics of Plasmas (1994-present), 16(8), 2009.

[23] G. Turchetti. Dinamica classica dei sistemi fisici. Collana di fisica. Testi e manuali.
Zanichelli, 1998.

[24] C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation. Series in
Plasma Physics. Taylor & Francis, 2004.

[25] M. Schollmeier, S. Becker, M. Geißel, K. A. Flippo, A. Blažević, S. A. Gaillard, D. C.
Gautier, F. Grüner, K. Harres, M. Kimmel, F. Nürnberg, P. Rambo, U. Schramm,
J. Schreiber, J. Schütrumpf, J. Schwarz, N. A. Tahir, B. Atherton, D. Hab, B. M.
Hegelich, and M. Roth. Controlled transport and focusing of laser-accelerated protons
with miniature magnetic devices. Phys. Rev. Lett., 101:055004, Aug 2008.

[26] P Antici, J Fuchs, E d’Humières, J Robiche, E Brambrink, S Atzeni, A Schiavi, Y Sen-
toku, P Audebert, and H Pépin. Laser acceleration of high-energy protons in variable
density plasmas. New Journal of Physics, 11(2):023038, 2009.

[27] K. Zeil, S. D. Kraft, S. Bock, M. Bussmann, T. E. Cowan, T. Kluge, J. Metzkes,
T. Richter, R. Sauerbrey, and U. Schramm. The scaling of proton energies in ultrashort
pulse laser plasma acceleration. New Journal of Physics, 12(4):045015, 2010.

[28] INFN Collaboration. SL-LILIA INFN project. http://sl-lilia.mi.infn.it.

[29] R. Tiede, G. Clemente, H. Podlech, U. Ratzinger, A.C. Sauer, et al. LORASR code
development. Conf.Proc., C060626:2194–2196, 2006.

[30] D. P. Rusthoi, W.P. Lysenko, and K. R. Crandall. Further improvements in trace 3-
d. In Particle Accelerator Conference, 1997. Proceedings of the 1997, volume 2, pages
2574–2576 vol.2, May 1997.

[31] I.M. Kapchinskij and V.V. and Vladimirskij. Limitations Of Proton Beam Current In
A Strong Focusing Linear Accelerator Associated With The Beam Space Charge. pages
274–287, 1959.

[32] A. Vivoli, C. Benedetti, and G. Turchetti. Time series analysis of coulomb collisions in a
beam dynamics simulation. Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment, 561(2):320 –
324, 2006. Proceedings of the Workshop on High Intensity Beam Dynamics Coulomb05
Workshop on High Intensity Beam Dynamics.

http://sl-lilia.mi.infn.it


84 BIBLIOGRAPHY

[33] K. Flöttmann. ASTRA. http://www.desy.de/~mpyflo, 2000.

[34] K. Flöttmann, S. M. Lidia, and P. Piot. Recent improvements to the ASTRA particle
tracking code. In Proceedings of PAC03, pages 3500–3502, 2003.

[35] Ali Almomani, Martin Droba, Ulrich Ratzinger, and Ingo Hofmann. Matching the Laser
Generated p-bunch into a CH-DTL. Conf.Proc., C100523:THPD035, 2010.

[36] Armando Bazzani, Graziano Servizi, Ezio Todesco, and Giorgio Turchetti. A normal
form approach to the theory of nonlinear betatronic motion. CERN, Geneva, 1994.

[37] H. Wiedemann. Particle Accelerator Physics. Advanced Texts in Physics. Springer,
2003.

[38] G. Franchetti. Linear beam optics in solenoidal channels. Phys. Rev. ST Accel. Beams,
4:074001, Jul 2001.

[39] C. Benedetti, A. Sgattoni, G. Turchetti, and P. Londrillo. ALaDyn: A high-accuracy
PIC code for the Maxwell-Vlasov equations. IEEE Transactions on Plasma Science,
36(4):1790 –1798, aug. 2008.

[40] E. Fischer, G. Moritz, N.N. Agapov, V. Bartenev, A. Donyagin, et al. Design and
Study of a Superferric Model Dipole and Quadrupole Magnets for the GSI Fast-pulsed
Synchrotron SIS100. 2004.

[41] K. Harres, I. Alber, A. Tauschwitz, V. Bagnoud, H. Daido, M. Gunther, F. Nurnberg,
A. Otten, M. Schollmeier, J. Schutrumpf, M. Tampo, and M. Roth. Beam collimation
and transport of quasineutral laser-accelerated protons by a solenoid field. Physics of
Plasmas, 17(2):023107, 2010.

[42] S Gilardoni, G Grawer, G Maire, J M Maugain, S Rangod, and F Voelker. Status of
a magnetic horn for a neutrino factory. Journal of Physics G: Nuclear and Particle
Physics, 29(8):1801, 2003.

http://www.desy.de/~mpyflo

	Sommario
	Introduction
	Laser-Plasma accelerators
	What is a plasma?
	Particle acceleration
	Accelerator basics

	Lasers
	Chirped Pulse Amplification

	Plasma physics
	Plasma accelerators
	Characteristics of plasma
	Debye length
	Plasma waves
	Refraction index
	Critical density and skin depth

	Protons acceleration
	Target Normal Sheath Acceleration
	Radiation Pressure Acceleration


	Integrators
	Runge Kutta schemes
	Third order scheme
	Fourth order scheme

	Symplectic schemes
	First order symplectic integrators
	Second order symplectic integrators

	Leapfrog integrators
	Second order scheme (LF2)
	Fourth order scheme (LF4)

	PICcol: my code to compare integrators in a PIC environment

	Protons transport
	Transport of protons coming from TNSA regime
	Lilia and Prometheus
	My experience at the Goethe University in Frankfurt
	BuGe: my bunch generator

	Propaga
	Introduction to our code
	Maps of the beamline elements

	Our simulations
	Bunches from PIC simulations
	The typical beamlines analysed
	Status of the code at the end of the Frankfurt period
	Simulations with K-V bunches
	The hard edge approximation removed
	Future work


	Conclusion
	Bibliography

